Weak convergence of particle swarm optimization - Institut de Mathématiques et de Modélisation de Montpellier
Pré-Publication, Document De Travail Année : 2024

Weak convergence of particle swarm optimization

Vianney Bruned
  • Fonction : Auteur
André Mas
Sylvain Wlodarczyk
  • Fonction : Auteur

Résumé

Particle swarm optimization algorithm is a stochastic meta-heuristic solving global optimization problems appreciated for its efficacity and simplicity. It consists in a swarm of particles interacting among themselves and searching the global optimum. The trajectory of the particles has been well-studied in a deterministic case and more recently in a stochastic context. Assuming the convergence of PSO, we proposed here two CLT for the particles corresponding to two kinds of convergence behavior. These results can lead to build confidence intervals around the local minimum found by the swarm or to the evaluation of the risk. A simulation study confirms these properties.
Fichier principal
Vignette du fichier
pso_2022-new.pdf (1.43 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01918943 , version 1 (12-11-2018)
hal-01918943 , version 2 (04-11-2019)
hal-01918943 , version 3 (18-09-2024)

Identifiants

  • HAL Id : hal-01918943 , version 3

Citer

Vianney Bruned, André Mas, Sylvain Wlodarczyk. Weak convergence of particle swarm optimization. 2024. ⟨hal-01918943v3⟩
110 Consultations
289 Téléchargements

Partager

More