A Reynolds-semi-robust and pressure robust Hybrid High-Order method for the time dependent incompressible Navier--Stokes equations on general meshes - Institut de Mathématiques et de Modélisation de Montpellier
Pré-Publication, Document De Travail Année : 2024

A Reynolds-semi-robust and pressure robust Hybrid High-Order method for the time dependent incompressible Navier--Stokes equations on general meshes

Résumé

In this work we develop and analyze a Reynolds-semi-robust and pressure-robust Hybrid High-Order (HHO) discretization of the incompressible Navier--Stokes equations. Reynolds-semi-robustness refers to the fact that, under suitable regularity assumptions, the right-hand side of the velocity error estimate does not depend on the inverse of the viscosity. This property is obtained here through a penalty term which involves a subtle projection of the convective term on a subgrid space constructed element by element. The estimated convergence order for the $L^\infty(L^2)$- and $L^2(\text{energy})$-norm of the velocity is $h^{k+\frac12}$, which matches the best results for continuous and discontinuous Galerkin methods and corresponds to the one expected for HHO methods in convection-dominated regimes. Two-dimensional numerical results on a variety of polygonal meshes complete the exposition.
Fichier principal
Vignette du fichier
nstime_resemi_pr_hho.pdf (648.21 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04693813 , version 1 (11-09-2024)

Identifiants

  • HAL Id : hal-04693813 , version 1

Citer

Daniel Castanon Quiroz, Daniele Antonio Di Pietro. A Reynolds-semi-robust and pressure robust Hybrid High-Order method for the time dependent incompressible Navier--Stokes equations on general meshes. 2024. ⟨hal-04693813⟩
18 Consultations
6 Téléchargements

Partager

More