Action of the finite subgroups of SL2(C) on Nakajima's quiver variety of Jordan's quiver and Procesi bundles
Action des sous-groupes finis de SL2(C) sur la variété de carquois de Nakajima du carquois de Jordan et fibrés de Procesi
Résumé
In this doctoral thesis, first of all, we have studied the decomposition into irreducible components of the fixed point locus under the action of Γ a finite subgroup of SL2(C) of the Nakajima quiver variety of Jordan’s quiver. The quiver variety associated with Jordan’s quiver is either isomorphic to the punctual Hilbert scheme in C2 or to the Calogero-Moser space. We have described the irreducible components using quiver varieties of McKay’s quiver associated with the finite subgroup Γ. We were then interested in the combinatorics coming out of the indexing set of these irreducible components using an action of the affine Weyl group introduced by Nakajima. Moreover, we have constructed a combinatorial model when Γ is of type D, which is the only original and remarkable case. Indeed, when Γ is of type A, such work has already been done by Iain Gordon and if Γ is of type E, we have shown that the fixed points that are also fixed under the maximal diagonal torus of SL2(C) are the monomial ideals of the punctual Hilbert scheme in C2 indexed by staircase partitions. To be more precise, when Γ is of type D, we have obtained a model of the indexing set of the irreducible components containing a fixed point of the maximal diagonal torus of SL2(C) in terms of symmetric partitions. Finally, if n is an integer greater than 1, using the classification of the projective, symplectic resolutions of the singularity (C2)n/Γn where Γn is the wreath product of the symmetric group on n letters Sn with Γ, we have obtained a description of all such resolutions in terms of irreducible components of the Γ-fixedpoint locus of the Hilbert scheme of points in C2.Secondly, we were interested in the restriction of two vector bundles over a fixed irreducible component of the Γ-fixed point locus of the punctual Hilbert scheme in C2. The first vector bundle is the tautological vector bundle that we have expressed the restriction in terms of Nakajima’s tautological vector bundle on the quiver variety of McKay’s quiver associated with the fixed irreducible component. The second vector bundle is the Procesi bundle. This vector bundle was introduced by Marc Haiman in his work proving the n! conjecture. We have studied the fibers of this bundle as (Sn × Γ)-module. In the first part of the chapter of this thesis dedicated to the Procesi bundle, we have shown a reduction theorem that expresses the (Sn × Γ)-module associated with the fiber of the restriction of the Procesi bundle over an irreducible component C of the Γ-fixed point locus of Hilbert scheme of n points in C2 as the induced of the fiber of the restriction of the Procesi bundle over an irreducible component of the Γ-fixed point locus of the Hilbert scheme of k points in C2 where k ≤ n is explicit and depends on the irreducible component C and Γ. This theorem is then proven with other tools in two edge cases when Γ is of type A. Finally, when Γ is of type D, some explicit reduction formulas of the restriction of the Procesi bundle to the Γ-fixed point locus have been obtained.To finish, if l is an integer greater than 1, then in the case where Γ is the cyclic group of order l contained in the maximal diagonal torus of SL2(C) denoted by µl, the reduction theorem restricts the study of the fibers of the Procesi bundle over the µl-fixed points of the punctual Hilbert scheme in C2 to the study of the fibers over points in the Hilbert scheme associated with monomial ideals parametrized by the l-cores. The (Sn × Γ)-module that one obtains seems to be related to the Fock space of the Kac-Moody algebra ˆsll(C). A conjecture in this direction has been stated in the last chapter.
Dans cette thèse de doctorat, nous avons, dans un premier temps, étudié la décomposition en composantes irréductibles du lieu des points fixes sous l’action d’un sous-groupe fini Γ de SL2(C) de la variété de carquois de Nakajima du carquois de Jordan. La variété de carquois associé au carquois de Jordan est isomorphe soit au schéma ponctuel de Hilbert dans C2 soit à l’espace de Calogero-Moser. Nous avons décrit ces composantes irréductibles à l’aide de variétés de carquois du carquois de McKay associé au sous-groupe fini Γ. Nous nous sommes ensuite intéressés à la combinatoire découlant de l’ensemble d’indexation de ces composantes irréductibles en utilisant une action du groupe de Weyl affine introduite par Nakajima. De plus, nous avons construit un modèle combinatoire lorsque Γ est de type D, qui est le seul cas original et remarquable. En effet, si Γ est de type A, un tel travail a déjà été fait par Iain Gordon et si Γ est de type E, nous avons montré que les points fixes qui sont aussi des points fixes du tore diagonal maximal de SL2(C) sont les idéaux monomiaux du schéma ponctuel de Hilbert dans C2 indexés par les partitions en escaliers. De manière plus précise, si Γ est de type D, nous avons obtenu un modèle de l’ensemble indexant les composantes irréductibles contenant un point fixe du tore maximal diagonal de SL2(C) en termes de partitions symétriques. Enfin, si n est un entier plus grand que 1, en utilisant la classification des résolutions projectives et symplectiques de la singularité (C2)n/Γn où Γn est le produit en couronne du groupe symétrique Sn des n premiers entiers et de Γ, nous avons obtenu une description de toutes ces résolutions projectives et symplectiques en termes de composantes irréductibles du lieu des Γ-points fixes du schéma ponctuel de Hilbert dans C2.Dans un second temps, nous nous sommes intéressés à la restriction de deux fibrés vectoriels au-dessus d’une composante irréductible du lieu des Γ-points fixes du schéma de Hilbert dans C2 fixée. Le premier fibré est le fibré tautologique dont nous avons exprimé la restriction en termes de fibrés tautologiques de Nakajima sur la variété de carquois du carquois de McKay associée à la composante irréductible fixée. Le second fibré vectoriel est le fibré de Procesi. Ce fibré a été introduit par Marc Haiman dans ces travaux démontrant la conjecture n!. Nous avons étudié les fibres de ce fibré en tant que (Sn × Γ)-module. Dans la première partie du chapitre de cette thèse consacré au fibré de Procesi, nous avons démontré un théorème de réduction qui exprime le (Sn × Γ)-module associé à la fibre de la restriction du fibré de Procesi au-desus d’une composante irréductible C du lieu des Γ-points fixes du schéma de Hilbert de n points dans C2 comme l’induit de la fibre de la restriction du fibré de Procesi au-dessus d’une composante irréductible du lieu des Γ-points fixes du schéma de Hilbert de k points dans C2 où l’entier k ≤ n est explicite et dépend de la composante irréductible C et de Γ. Ce théorème est ensuite démontré avec d’autres outils dans deux cas particuliers pour Γ de type A. Enfin, lorsque Γ est de type D, certaines formules explicites de réduction des fibres de la restriction du fibré de Procesi au lieu des Γ-point fixes ont étéobtenues.Pour finir, si l est un entier plus grand que 1, alors dans le cas où Γ est le sous-groupe cyclique d’ordre l contenu dans le tore maximal diagonal de SL2(C) noté µl, le théorème de réduction restreint l’étude des fibres du fibré de Procesi au-dessus du lieu des µl-points fixes du schéma ponctuel de Hilbert dans C2 à l’étude des fibres au-dessus des points du schéma de Hilbert associés aux idéaux monomiaux paramétrés par les l-cœurs. Les (Sn × µl)-modules que l’on obtient semble être reliés à l’espace de Fock de l’algèbre de Kac-Moody ˆsll(C). Une conjecture dans ce sens est énoncée dans le dernier chapitre.
Domaines
Algèbre commutative [math.AC]Origine | Version validée par le jury (STAR) |
---|