On b-greedy colourings and z-colourings - Inria-Brasil
Article Dans Une Revue Discrete Applied Mathematics Année : 2024

On b-greedy colourings and z-colourings

Résumé

A b-greedy colouring is a colouring which is both a b-colouring and a greedy colouring. A z-colouring is a b-greedy colouring such that a b-vertex of the largest colour is adjacent to a b-vertex of every other colour. The b-Grundy number (resp. z-number) of a graph is the maximum number of colours in a b-greedy colouring (resp. z-colouring) of it. In this paper, we study those two parameters. We show that similarly to the z-number, the b-Grundy number is not monotone and can be arbitrarily smaller than the minimum of the Grundy number and the b-chromatic number. We also describe a polynomial-time algorithm that decides whether a given k-regular graph has b-Grundy number (resp. z-number) equal to k + 1. We also prove that every cubic graph with no induced 4-cycle has b-Grundy number and z-number exactly 4.
Fichier principal
Vignette du fichier
DAM-publie.pdf (630 Ko) Télécharger le fichier
Origine Publication financée par une institution

Dates et versions

hal-04770138 , version 1 (06-11-2024)

Licence

Identifiants

Citer

Jonas Costa Ferreira da Silva, Frédéric Havet. On b-greedy colourings and z-colourings. Discrete Applied Mathematics, 2024, 359, pp.250-268. ⟨10.1016/j.dam.2024.08.001⟩. ⟨hal-04770138⟩
0 Consultations
0 Téléchargements

Altmetric

Partager

More