A closed-form extension to the Black-Cox model
Résumé
In the Black-Cox model, a firm defaults when its value hits an exponential barrier. Here, we propose an hybrid model that generalizes this framework. The default intensity can take two different values and switches when the firm value crosses a barrier. Of course, the intensity level is higher below the barrier. We get an analytic formula for the Laplace transform of the default time. This result can be also extended to multiple barriers and intensity levels. Then, we explain how this model can be calibrated to Credit Default Swap prices and show its tractability on different kinds of data. We also present numerical methods to numerically recover the default time distribution.
Origine | Fichiers produits par l'(les) auteur(s) |
---|