A framework for adaptive Monte-Carlo procedures - MATHFI
Article Dans Une Revue Monte Carlo Methods and Applications Année : 2011

A framework for adaptive Monte-Carlo procedures

Résumé

Adaptive Monte Carlo methods are recent variance reduction techniques. In this work, we propose a mathematical setting which greatly relaxes the assumptions needed by for the adaptive importance sampling techniques presented by Vazquez-Abad and Dufresne, Fu and Su, and Arouna. We establish the convergence and asymptotic normality of the adaptive Monte Carlo estimator under local assumptions which are easily verifiable in practice. We present one way of approximating the optimal importance sampling parameter using a randomly truncated stochastic algorithm. Finally, we apply this technique to some examples of valuation of financial derivatives.
Fichier principal
Vignette du fichier
adaptive.pdf (225.83 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00448864 , version 1 (20-01-2010)
hal-00448864 , version 2 (07-07-2010)

Identifiants

Citer

Bernard Lapeyre, Jérôme Lelong. A framework for adaptive Monte-Carlo procedures. Monte Carlo Methods and Applications, 2011, 17 (1), pp.77-98. ⟨10.1515/MCMA.2011.002⟩. ⟨hal-00448864v2⟩
500 Consultations
1079 Téléchargements

Altmetric

Partager

More