Article Dans Une Revue IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing Année : 2024

Ship Detection From Raw SAR Echoes Using Convolutional Neural Networks

Résumé

Synthetic aperture radar (SAR) is an indispensable tool for marine monitoring. Conventional data processing involves data down-linking and on-ground operations for image focusing, analysis, and ship detection. These steps take significant amount of time, resulting in potentially critical delays. In this work, we propose a ship detection algorithm that operates directly on raw SAR echoes, based on convolutional neural networks. To evaluate our approach, we performed experiments using raw data simulations and real raw SAR data from Sentinel-1 stripmap mode scenes. Preliminary results on this set show the capability of detecting multiple ships from raw data with similar accuracy as using single-look-complex images as input. Simultaneously, running time is reduced significantly, by-passing the image focusing step. This illustrates the great potential of deep learning, moving toward more intelligent SAR systems.
Fichier principal
Vignette du fichier
De Sousa_2024.pdf (6.55 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
licence

Dates et versions

hal-04926404 , version 1 (03-02-2025)

Licence

Identifiants

Citer

Kevin de Sousa, Georgios Pilikos, Mario Azcueta, Nicolas Floury. Ship Detection From Raw SAR Echoes Using Convolutional Neural Networks. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17, pp.9936 - 9944. ⟨10.1109/jstars.2024.3399021⟩. ⟨hal-04926404⟩
0 Consultations
0 Téléchargements

Altmetric

Partager

More