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Abstract

We present a system based on the need of special infrastructure adequate to software agents to

operate, to compose and make sense from the contents of the Web resources through the development

of a multi-agent system oriented services interactions. Our method follows the different construction

ontology techniques and updates them by extracting new terms and integrate them to the ontology.It is

based on the detection phrases via the ontological database DBPedia. The system treats each syntagme

extracted from the corpus of messages and verifies whether it is possible to associate them directly to

a DBPedia knowledge. In case of failure, these service agents interact with each other in order to find

the best possible answer to the problem, by operating directly in the phrase, trying to semantically

modify it, until the association with ontological knowledge becomes possible. The advantage of our

approach is its modularity : it is both possible to add / modify / delete a service or define a new one,

and then influence the outcome product. We could compare the results extracted from a heterogeneous

body of messages from the Twitter social network with Tagme method, based mainly on storage and

annotation of encyclopaedic corpus.
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1 Introduction

Since the emergence of social networks and real-time public information in the Internet, the
continuous changes of the web in the Era of the big data makes the data collection and process-
ing harder by humans operators. It’s the information monitoring, which characterizes all the
implemented strategies that keep us informed about a special subject, in the least time possible
and by using automated (signal) reporting processes, which is the most impacted.

Yet this domain is increasingly highlighted by the industry and politics to monitor their
ecosystem and ensure the good image/reputation of their brand image or to monitor and adapt
their communication strategy.

We consider that the analyst’s work requires a special infrastructure adequate to software
agents to operate, to compose and make sense from the contents of the Web resources. We
demonstrate this need through the development of a multiagent system oriented services inter-
actions.

Therefore, our contribution follows the different construction techniques and updates on-
tology proposed in the literature and in particular the socalled adaptive multiagent systems.
These techniques aim to extract new terms and to integrate them into the ontology [5].

The technique we propose is based on the detection phrases via the ontological database
used as DBPedia [1]. To achieve this, we have developed a prototype that incorporates part of
the work done by the SMAC team LIFL by developing a multiscale model for the simulation
oriented interactions [3] by moving towards the use of ’Agents acting as an interface between
the system and an online service such as databases of Acronyms, Synonyms, Homonymes. At
a global level, the system treats each syntactical groupe (nominal, verbal) extracted from the
corpus of messages and verifies whether it is possible to associate them directly to a DBPedia
knowledge. In case of failure, these service agents interact with each other in order to find the
best possible answer to the problem, by operating directly in the phrase, trying to semantically
modify it, until the association with ontological knowledge becomes possible [6], [7].

If the process doesn’t succeed, the phrase is not extracted from the message and is considered
irrelevant. The advantage of our approach is its modularity ; the possibility of interactions
between services, it is both possible to add / modify / delete a service or define a new one, and
then influence the outcome product.

Following the implementation of our prototype, we could compare the results extracted from
a heterogeneous body of messages from the Twitter [4] social network with Tagme method [2],
which approach is based mainly on storage and annotation of encyclopaedic corpus.

That may become disabling whether considering the changing aspect of Big Data and
the needs of industry in order to benefit the realtime information from constantly updating
databases as DBPedia.

2 TAGME the On-the-fly Annotation of Short Text Frag-
ments tools

As mentionned in [2] ”In the domain of the fast annotation of short message in social network,
TAGME is a powerful tool that is able to identify on-the-fly meaningful short-phrases (called
”spots”) in an unstructured text and link them to a pertinent Wikipedia page in a fast and
effective way. This annotation process has implications which go far beyond the enrichment
of the text with explanatory links because it concerns with the contextualization and, in some
way, the understanding of the text.”



Tagme uses a snapshot of Wikipedia, from the November 6, 2009. The datas are indexed
locally. Anchors were drawn from Wikipedia pages, so they added the titles of redirect pages
and some variants of the pagetitles.

”The idea is to manipulate the indexed data, by using for example statistical methods to
find the most relevant keyword to enrich the initial short text.”

As indicated, TAGME requires at first to recover data from an indexed knowledge database,
which is problematic for us in terms of storage in a big data context and in a real-time context.

This is why we implemented an approach using the full capacity of big data, by using
services agents communicating, in order to find the best result, taking into account the context
and databases that can evolve in real time, and also to provide new exploitable informations at
any time, or news in real time, like it’s the case with Twitter.

In this work, we will explain our ideas by using some examples, and we will compare our
approach with Tagme only about the relevance of data. We are not concerned in the scope of
the performance in this paper, although we don’t forget this important aspect as you will see
in the next parts of this paper.

The main interest of our approach is to provide a system capable of processing lexical
ambiguities within a corpus of tweets in order to extract from a data stream relevant and useful
messages to build a corpus. Therefore, the method is connected to different APIs developed
to retrieve data from a stream on Twitter and allows to analyze, in real-time or not, a source
message.

The selection of relevant messages is an important part of our system because it permits to
filter a huge amount of data and select a subset of messages to analyze in the next step.

3 Automated building of a corpus of tweets

To introduce our work, it’s necessary to define and explain what is Twitter and why this social
network is really useful for our work. As mentionned in [4] :

”Twitter, a microblogging service less than three years old, commands more than 41
million users as of July 2009 and is growing fast. Twitter users tweet about any topic
within the 140-character limit and follow others to receive their tweets.”

• Number of monthly active users (MAU): 304 million;

• Number of monthly active users who post tweets: 117 million;

• Every minute 350,000 tweets are posted on Twitter, or 183.96 billion tweets per year.

So you understand now why Twitter is a good research study subject to retrieve a huge
amount of data. Our system of fast annotation of short messages is also usable for the automated
construction of a thematic corpus and we will see how we do that. But before that, we will
explain how we retrieve data from the studied social network.

As mentionned below, Twitter developpers propose two mains APIs. For our work, we built
a third API from scratch by using the Python programming language to retrieve more data
without the limitation from the Twitter company.

So, in the case of Twitter, we have for now three types of APIs that we can compare :

• JSON API (limited but allows to retrieve published data);

• Streaming API (interesting to retrieve text in real time without limitation);

• From Scratch API (automatic scrapping that simulates a browser. Good compromise
between the two approaches but it needs to be modified when the twitter structure evolves.
There is no time or query limitation with our API).



In this step, we can define three ways to retrieve messages. We combined the three APIs to
build an Agent in order to retrieve a data stream.

The result produced by this Agent may also be used in others professional contexts, such
as the real-time monitoring.

After building this Agent, it’s necessary to find a good way to select relevant messages. For
this, it’s important to define what is ”relevant”. To illustrate this idea, we can make a real-time
search from a hashtag (a keyword related to an event, for example) on Twitter and index in
real-time all messages about this event.

If we study for example the extraction of messages mentioning the President of the United
States of America, Barack Obama, the primary idea would be to list all the keywords that can
refer to the U.S. President. After that, we just have to detect in the stream or in the feed of
messages the presence or absence of these keywords.

Here is a part of this list :

• Barack Obama

• Barack Hussein Obama

• Obama

• President Obama

• The president of the United States of America

• The president of the USA

• Brack Obma (mispelling case)

• @BarackObama (mention on Twitter)

• ...

The main difficulty of this simple approach is to list a complex set of elements relative to the
President of the United States of America. So we implemented a system that has the ability to
work without this complex list. We simply indicate that we want to use the Barack Obama’s
resource on DBPedia which correspond to the Barack Obama’s page on Wikipedia. We can
define a resource in DBPedia with a link like in the following table. Our system will be able to
associate each type of name relative to Barack Obama with the knowledge database by using
several services that we have to define previously.

Keywords Resource
Barack Obama http://dbpedia.org/page/Barack Obama

Table 1: DBPedia Ontological Resource

For example, if I’m interested in tweets of ”Barack Obama”, I will need agents for:

• messages with one or more spelling mistakes ;

• the message with relatives phrases: President Obama, Obama, President of the United
States ...



For this, after extraction of phrases that we want to analyze, a first comparison with data
from Wikipedia is performed and if it fails, the problem is transmitted to others services that
will try to solve it.

In the case of spelling errors, the system will use a service able to offer spelling corrections
like it iss the case when performing a Google search. After this step, the corrected phrase will
be resubmitted to Wikipedia. Other correction methods are also used in particular, thanks to
the modularity of our system.

If that fails, we use a service based on a Google search result that allows to obtain results
of an expression such as ”President Obama” to retrieve a set of Bi-Grams on the search results
that we sort by frequency. We can match via this method ”President Obama” with ”Barack
Obama” that allows the final tweet validate and incorporate our corpus.

In addition, since knowledge databases of several Internet services are updated regularly, if
a new name for the President of the United States of America appears, it will be associated to
our main resource.

The effectiveness of the system will be determined by the number of services used, but also
by the size of the interactions list, and by the order of priority assigned to each interaction.

Our corpus generation system uses other parameters such as the dates of beginning and
end, relationships between a speaker and someone who interests us (i.e. people following each
other), etc. Since this system is based on the Twitter’s API, it is possible to use a certain
number of parameters to target messages that can potentially interest us.

Twitter offers the following list of parameters :

• delimited

• stall warnings

• filter level

• language

• follow

• track

• locations

• count

• with

• replies

• stringify friend id

The progressive dimension of the system through flexible agents permits to adapt our tool
for a lot of professionnal tasks.

4 Our initial approach

After retriving all the ”good” messages, it is necessary to analysze each message to extract data
from DPedia database (or Wikipedia).

Initially our method is divided into three stages. It takes as input a short message and gives
in the output a text enriched by links to Wikipedia or DBPedia.

• Split the content (using POS tagging with a from scratch algorithm to split and order the
content) ;



• Use knowledge databases to associate data. ;

• Extract data.

To split the content of a message, we use at first a service that produce morpho-syntax graph
as known as part-of-speech tagging (POS tagging or POST). It consists in the identification
of words as nouns, verbs, adjectives, adverbs, etc, in a message. Also, the part-of-speech
tagging works with relationship with adjacent and related words in a phrase, sentence, or
paragraph. There is a lot of POS tagging services on the Internet as http://mshang.ca/syntree/
or http://ironcreek.net/phpsyntaxtree/

In a multilingual context, it will be possible to define as much POS tagging agents as
languages. For that, it will be necessary to build for each language a specific precondition as
”is french(word) or is english(word). The precondition in the interactions list will guide the
agent’s choices toward the best method.

5 Description of a simple agent-based service

The smallest element of the system is called a reactive service agent. It is a simple agent that
takes an input data as an argument and that connects to a service to retrieve information that
will be returned. A simple agent takes as input between 1 and n n-grams and returns the output
from 1 to n n-grams. For example, take the case of an acronym agent who takes an acronym
parameter and returns a list from 0 to n possibilities.

Figure 1: A simple AcronymFinderAgent

6 Description of a complex agent-based service

In addition to the simple agent, a complex agent has the ability to take decisions. For this, it
has a list of interactions that allows it to choose who to contact first. Just like the simple agent,
it takes as input between 1 and n n-grams and returns the output from 1 to n n-grams. It can



internally have an algorithm for processing the data received by the online service to filter the
results, for example. This agent may be reactive without limitation, cognitive or hybrid.

About the list of interactions, it is similar to the interaction matrix of the IODA methodology
of the SMAC team of the Crystal laboratory of University of Lille 1.

We can define an interaction by a set composed of a target agent and a precondition
(is an acronym() for example). Consequently, if FOO is an acronym, then we will call the
single agent that we defined in the previous section. If necessary, a precondition may itself call
a simple service or locally use an algorithm. The modularity of the system allows to compose
a multi-agent system, taking into account the constraints of the system developer.

#Python function for acronym checking

def is_an_acronym(word_i_want_to_check):

upper_case_letters = "QWERTYUIOPASDFGHJKLZXCVBNM0123456789."

abbrevation = ""

for letter in word_i_want_to_check:

if letter in letters:

abbrevation += letter

if word_i_want_to_check == abbreviation :

return True

return False

About the interactions list, there is two common ways to build it : by building a com-
plex agent with interactions to communicate with simple agents, or by building an agent that
communicate with others complex agents. The main interest of the second approach is the
modularity. Indeed, we can delegate several parts of the system and modelize sub-systems.

Priority precondition Target website
1 is an acronym AcronymFinderAgent http://www.acronymfinder.com/
2 is an acronym AcronymSearchAgent http://www.acronymsearch.com/
3 is splitable SplitStringAgent None

Table 2: Interactions list for an Agent that communicate with simple agents

Priority pre-condition
1 is an acronym AcronymAgent
2 is splitable SplitStringAgent

Table 3: Interactions list for an Agent that communicate with complex agents

Priority precondition Target website
1 is an acronym AcronymFinderAgent http://www.acronymfinder.com/
2 is an acronym AcronymSearchAgent http://www.acronymsearch.com/

Table 4: Interactions list for a complex AcronymAgent



The main interest of the last method is to wrap all acronym agents mentionned previously,
in a specific agent.

To explain how the system works, for each element, the agent will check if the n-gram is an
acronym. If not, it will try to split the string to see if any of the items is an acronym.

If an acronym is found, the system will attempt to retrieve the equivalence. And if nothing
is found, then the acronym agent will return None and the system will try to split again the
string if it is possible. The interactions list will be called again.

We won’t discuss more here about complex preconditions that need to introduce the concept
of multi-scale oriented interactions multi-agent system but we refer you to [7] for an introduction
to this important field about our future works.

7 A multi-agent-based model for service-oriented interac-
tion

We consider that any Internet data present can become a service within our system. It can be
a simple web service or a more complex service whose results are generated through the result
produced, for example, by a search engine, according to algorithms that may be favorable to us.
And this is the case for our agent that allows the modification by substitution using frequency
algorithm on google search results.

This agent takes into account the fact that Google results are often linked to current events.
Therefore, relevant results dealing with current themes appear in the top of the search engine
page, and may fill the entire first page.

It is from this observation that we have put in place an agent that can find ”synonyms” of
the searched term.

To be more specific, lets take the example of Barack Obama, who is the main object of our
study in the context of this paper. As you know, there are lots of way to name the President
of the United States. The idea is to understand that a search engine like Google will be able
to provide reliable correspondence information (contextually), whatever the term used.

Figure 2: A first tweet from the US President



If I search for ”President Obama” in Google, I notice that on the page is mentionned
Barack Obama. My idea is to measure statistically the presence of the bi-gram Barack Obama,
to determine if President Obama means Barack Obama or if it means something else, as you
can see in the following figures.

Figure 3: Google research for ”President Obama”

Figure 4: Google suggestion (in wikipedia) for ”President Obama”



This allows me to substitute the bi-gram ”Barack Obama” to the bi-gram ”President
Obama”. This resolves an ambiguity regarding DBPedia and validate the message.

In the same idea, it is possible to use Google as an agent spellchecker. As you know, Google
is able to propose corrections via its suggestion module. Therefore, it is easy to retrieve a
correction of a term and to associate it, collecting the proposed data.

Figure 5: Google as a service for fixing spelling mistakes

As mentioned in the example, it is possible to find Barack Obama in the page search for
”Brack Obma” and for every other research with a spelling mistake. We can then propose a
spelling checker agent which is also based on Google.

To conclude this section, one should know that a web service can be understood broadly
and that a web page is able to provide a multitude of exploitable services, in order to have
relevant data, updated in real time.



8 Example and comparison with TagMe

We will take as an example a message posted by the President of the United States, Barack
Obama, about the net neutrality and the FCC.

Figure 6: A second tweet from the US President

By using the segmentation algorithm, we can get the following :



Figure 7: A morpho-syntax graph from the tweet

Therefore, we can define a list of elements to analyze by priority order.

In some cases, we have to remove some elements. It is the case, for example, when we have
a stop word (a stop word can be found with a dedicated service). In this case, we remove ”of”
and ”a” because there is a n-gram next to them. Also, we remove the ”in” between ”voted”
and ”favor”, because ”voted” is a verb. We can also remove ”the”, because it’s a stop word
and we have a mention next to it. That means that we have to treat the mention separately,
because it is destinated to someone in particular.

FCC Voted Favor free and open internet

Table 5: 1st step of the analyze

Free open internet

Table 6: second step of the analyze



Our Approach Tag Me
News Hypertext Transfer Protocol
Federal Communications Commission Free software
Voting Internet
Open internet The News Today
The Atlantic Debian
Net neutrality Orthopedic Foundation for Animals

Federal Communications Commission
Network neutrality

Table 7: Comparison of results

The link will be analyzed in the same way. We won’t describe the algorithm for obvious
reasons, but you can find in the next lines how we treated this kind of data. If the entity is a
link, then our system will use an agent that will analyze the page. The agent will extract a set
of data that will seem relevant by the system designer, which we define below:

• content of the title tag

• content of the h1 tag

• content of the meta description tag

• content of the first h2 tag

• the link will be ignored

In general, unlike TagMe, our approach permits to gain in quality. This quality is gained
by three ways : either by proposing an identical extraction, either by proposing a more spe-
cific extraction, or by proposing a reduced extraction (by deleting non relevant elements, for
example).

In term of performance, we are not able for now to evaluate our approach compared to
TagMe, and as indicated in the beginning of this paper, this is not our goal.

9 Conclusion and outlook

To conclude, after the implementation of our prototype, we were able to compare the results
extracted from a heterogeneous corpus of messages from the Twitter social network with the
TagMe method. Remember that the Tagme approach is based primarily on storage and anno-
tation with an encyclopaedic corpus, which can be outdated if we consider the changing aspect
of Big data and the needs of the industry to get informations and knowledges in real time.

Additionally, about industrialistss needs, it will be quite possible to consider a system that
will be linked with the companys products catalog, with customers, or suppliers, instead of a
knowledge database as DBPedia. This system will be able to propose an extraction of relevant
messages, that will be analyzed and exploited as part of a business intelligence. Therefore, the
company will be able to adapt its supply and demands to the target market.

Finally, the strenght of our approach is based on its modularity, undoubtedly. By proposing
an adjustable approach based on a multi-agents system, the system will be able to be adapted
to several problematics, going beyond social networks. Moreover, comparative approaches will
be lead to determine for every agent the perfect service and the perfect algorithm, depending
on needs, and that will be the object of our future works.



10 Future Work

First, one of our future works is to integrate a ”feeling” agent for evaluate the sentiment
expressed in a message and therefore extract, for example, only negative messages that allow to
modelise a precise aspect of a brand’s eco-system, for example. So it will be possible to retrieve
in a stream only messages with positive opinion.

Next, as mentionned, we also work in a Multi-scale paradigm. In the futur, we will implement
some ideas to improve our system.

And finally, as indicated at the beginning of this paper, we want to work with ontological
knowledge database to produce a specific and thematic domain ontology from social network
data included without limitation, opinion, relationship between users, influence. For that, we
will define a ontological template to represent the social media communication on the Internet.
Our system will be able to generate knowledges from social network extanded by DBPedia
knowledge.

References

[1] Sren Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, and Zachary Ives. Dbpedia: A
nucleus for a web of open data. In In 6th Intl Semantic Web Conference, Busan, Korea, pages
11–15. Springer, 2007.

[2] Paolo Ferragina and Ugo Scaiella. Tagme: On-the-fly annotation of short text fragments (by
wikipedia entities). In Proceedings of the 19th ACM International Conference on Information and
Knowledge Management, CIKM ’10, pages 1625–1628, New York, NY, USA, 2010. ACM.
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