
HAL Id: hal-03113153
https://univ-paris8.hal.science/hal-03113153

Submitted on 18 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Extensible constraint syntax through score accessors
Mikael Laurson, Mika Kuuskankare

To cite this version:
Mikael Laurson, Mika Kuuskankare. Extensible constraint syntax through score accessors. Journées
d’Informatique Musicale, Association Française d’Informatique Musicale; Centre de recherche en In-
formatique et Création Musicale, Jun 2005, Paris, France. �hal-03113153�

https://univ-paris8.hal.science/hal-03113153
https://hal.archives-ouvertes.fr

EXTENSIBLE CONSTRAINT SYNTAX THROUGH SCORE
ACCESSORS

Mikael Laurson Mika Kuuskankare
Sibelius Academy, CMT

laurson@siba.fi
Sibelius Academy, DocMus

mkuuskan@siba.fi

ABSTRACT

We present in this paper our recent developments
dealing with constraint-based programming. Our focus
is in a new syntax that extends the pattern-matching part
of our rule system. The syntax allows to refer to more
high-level entities in a score than before, resulting in
compact rules that use only a minimal set of primitives.
The system can be used to define a wide range of cases
ranging from melodic, harmonic and voice-leading
rules. The compiler can be extended to support new
score accessor keywords by special compiler methods.
The new syntax is explained and demonstrated with the
help of a large number of rule examples.

1. INTRODUCTION

When using a procedural programming language, such
as C or Pascal, or a functional language, like Lisp,
typically the user has to solve a problem in a stepwise
manner. In many cases this approach is an adequate
one, but for many types of problem it may lead to
programs that are difficult to design or understand.
Descriptive languages, such as Prolog, offer an
alternative way to look at this problem: instead of
trying to solve a problem step-by-step, the user
describes a possible result with the help of a set of
rules. It is then up to the language to find solutions that
are coherent with the descriptions. This approach is
probably more natural for individuals with a musical
background. A typical music-theoretical writing offers a
discussion on some properties of some pieces of music,
not a step-by-step description of how those pieces were
made.
PWConstraints [1] can be thought of as a descriptive
language. PWConstraints is written in Common Lisp
and CLOS. When using it we do not formulate stepwise
algorithms, but define a search-space and produce
systematically potential results from it. Typically we are
not interested in all possible results, but filter (or,
rather, constrain) these with the help of rules describing
an acceptable solution.
There are currently several other constraint-based
approaches dealing with musical problems such as
Situation [2], Arno [3], OMClouds [4] and the more
recent system by Anders based on the OZ programming
language [5]. In some respects these systems are similar
as they all apply user defined rules to find a solution.
They differ, however, considerably in their approach on
how the solution is found and how rules are formulated
by the user: for instance PWConstraints and Arno are
similar as they both normally apply strict rules that
must all be satisfied in the result (PWConstraints
supports heuristic rules but they belong to a special rule

category); OMClouds, by contrast, utilizes
systematically a heuristic approach where the system
tries to find an approximate solution that fulfils the
given criteria as close as possible; rules are formulated
in PWConstraints using a pattern-matching language
whereas in OMClouds the constraints are expressed in
logical forms that are translated into cost functions;
finally—as an interesting feature from the point of view
of this article—both PWConstraints and Anders’
systems support score structures that allow to solve
polyphonic search problems (Andres’ system is
especially interesting in this respect as it allows to solve
both the rhythm and the pitch structure simultaneously
within in search). A good comparison of different music
oriented constraint-based systems can be found in [5].
A specific problem in the musical domain is that the
task of describing a musical result is far from trivial. As
such a result is typically seen from many different
points of view, we need highly flexible data structures
to describe musical structures. Each rule should be able
to dynamically extract required information out of a data
structure, allowing the rule to analyse a result from its
own point of view. One of the main problems in
formulating such rules is to find a clear formalism with
which to point to the required data objects. This article
presents a new approach that allows to access in a
uniform way various structural entities from a score,
such as chords, beats, measures and harmonic
formations.
In the following we first introduce and compare the two
main components of our constraint-based system: PMC
and Score-PMC (Section 2). We discuss some problems
in the current Score-PMC implementation and propose a
new syntax that allows to add in the rules score accessor
keywords (Section 3). Finally the new syntax is utilized
to write melodic, harmonic, voice-leading and special
score-sort rules (Sections 4, 5, 6 and 7).

2. BACKGROUND

PMC [1] is currently an integral part of our visual
programming environment called PWGL [6]. A search-
space is defined as a set of search-variables. Each search-
variable has a domain containing a list of values. In a
rule a pattern-matching language is used to extract
relevant information from a potential solution. This
information is given to a Lisp test function, called Lisp-
code part, that either accepts or rejects the current choice
made by the search-engine. The rules are compiled to
efficient Lisp functions.

The pattern-matching part of a rule uses a fairly typical
pattern-matching syntax. It can contain variables
(symbols starting with a ‘?’), anonymous-variables

(plain ‘?’s), a wild card (‘*’) and index-variables
(symbols consisting of an ‘i’ and an index number). A
variable extracts single values from a partial solution.
By contrast, an anonymous-variable is never bound to a
value, i.e. it only acts as a ‘place-holder’ in the pattern.
The wild card matches any continuous part of a partial
solution. Finally, an index-variable extracts values from
an absolute position. Below we give some pattern-
matching examples with their respective bindings (in
order to clarify the examples the pattern below the input
is formatted with the help of spaces so that it matches
its input):

input: (1 2 3 4 5)
pattern: (?1 ? ? ?2 ?)
match: ?1 = 1, ?2 = 4

input: (1 2 3 4 5)
pattern: (i1 i2 i5)
match: i1 = 1, i2 = 2, i5 = 5

input: (1 2 3 4 5)
pattern: (* ?1)
match: * = (1 2 3 4), ?1 = 5

input: (1 2 3 4)
pattern: (* ?1 ?2)
match: * = (1 2), ?1 = 3, ?2 = 4

input: (1 2 3 4 5 6 7)
pattern: (?1 * ?2 ?3)
match: * = (2 3 4 5), ?1 = 1, ?2 = 6, ?3 = 7

As an example a PMC rule disallowing two adjacent
equal values in a result can be written as follows (this
rule uses a wild card and two variables):

(* ?1 ?2 ;;pattern-matching part
 (?if (/= ?1 ?2)) ;;Lisp-code part
 "no equal adjacent values")

Besides these basic tools our system contains several
extensions. The most important and complex one is
used to solve polyphonic search problems. This is
accomplished with a function called Score-PMC. Like
in a traditional polyphonic score, the user operates with
several layers (parts, voices) of events (notes). The
rhythmic structure of a search problem is prepared in
advance in a standard PWGL score-editor. This input
score, which can be arbitrary complex, is given as an
argument to the search engine. The search, in turn, aims
at filling the input score with pitch information
according to the given rules. In a sense Score-PMC can
be seen as a multi-layered search problem where each
melodic line represents one queue structure similar to
the one used by a simple PMC search problem (Figure
1):

(1) PMC:
 v1, v2, v3, ….., vN
(2) Score-PMC (3-part case):
 v11, v12, v13, ….., v1N
 v21, v22, v23, ….., v2N
 v31, v32, v33, ….., v3N

Figure 1. A PMC queue structure (1) compared with a 3-part
multilayered Score-PMC example (2).

Score-PMC uses a similar syntax when compared to
PMC. The main change is that now the variables in the
pattern-matching part always refer to note objects. This
scheme is useful as the note objects of the input score
contain potential information of the current musical
context, such as instrument, part, pitch, metrical
position and harmony. This knowledge can be used to
define for instance traditional counterpoint rules [1].
Score-PMC has been used to solve several large scale
and concrete musical problems. For more details see [1]
and [2].

The previous PMC rule example can be translated into
Score-PMC syntax as follows:

(* ?1 ?2 ;;pattern-matching part
 (?if (/= (m ?1) (m ?2))) ;;Lisp-code part
 "no equal adjacent melodic pitches")

The expressions ‘(m ?1)’ and ‘(m ?2)’ denote now to the
pitch-values of the notes referred by the variables ‘?1’
and ‘?2’ (‘m’ stands for ‘midi’). Similarly, harmonic
rules can be defined using the functions ‘hc’ and ‘h-
slice’ (short-hands for ‘harmonic context’ and ‘harmonic
slice’); rules that refer to the metric position of a note
can be defined using the function ‘rtm-match?’; and so
on. This rule is applied to all melodic lines found in the
score. If we want to apply the rule only to parts 1 and 3
we can modify it by adding the keyword ‘:partnum’ in
the pattern-matching part:

(* ?1 ?2 :partnum (1 3) ;;pattern-matching part
 (?if (/= (m ?1) (m ?2))) ;;Lisp-code part
 "no equal adjacent melodic pitches in parts 1 and 3")

While this system has proven to be powerful and
efficient, Score-PMC rules can occasionally be quite
hard to define and understand. One reason for this
difficulty is the fact that the variables always refer to the
most low-level entity of the score (i.e. note objects),
even if the rule works with more high-level concepts
like chords, beats, measures or harmonies. This
feature—i.e. lack of structural accessors—has been
criticized in [5]. Another difficulty with Score-PMC
rules is that the system strongly prefers melodic
formations (see Figure 1 and the previous Score-PMC
rule) and the pattern-matching part is useful mainly
when writing melodic rules. If the user wants to write
for instance a harmonic rule then the required structural
information has to be accessed in the Lisp-code part by
using special Lisp help functions like ‘hc’, ‘h-slice’,
‘hc-midis’, ‘prev-item’, etc. Thus when writing non-
melodic rules the user has to have knowledge of the
implementation of the system and master a large library
of help functions. Finally, as one has to be conscious of
implementation details the coding of new rules or Lisp
help functions can become a complex and error prone
process.
This paper presents a new Score-PMC pattern-matching
syntax that allows the user to specify special score
accessors, which provide the user with a more high-
level and intuitive approach when working with Score-
PMC rules. This syntax is compatible with the old one
and rules using the old syntax are fully functional in the

new system. The variables given in the pattern-matching
part of a rule can now refer to the structural entity the
user is interested in, such as note, chord, beat, measure
and harmony. The aim is to deal with the most complex
part of the system automatically in the compilation
process (i.e. when rules are translated into Lisp
functions). The novel compiler is modular and new
score accessors can be added incrementally.

The new syntax has many benefits: rules tend to be
more compact and simple; the pattern matching
language can be used systematically for all kinds of
valid accessors; the user typically needs to know only a
handful primitives in order to write new rules; potential
bugs can be localized more easily as the most complex
part of the system is localized in the compiler and not
in user code.

3. SCORE ACCESSOR SYNTAX

In the new syntax the compiler accepts an optional score
accessor keyword that defines the type of the variables
that are declared in the pattern-matching part. If the rule
has no accessor keyword then the compiler assumes that
the variables refer to note objects. For instance in the
"no equal adjacent melodic pitches" rule the variables
‘?1’ and ‘?2’ are notes. Thus all melodic rules written in
the old syntax will work as before. Valid accessor
keywords are: ‘:chord’, ‘:beat’, ‘:measure’, ‘:harmony’,
and ‘:score-sort’. This list can be extended by adding
appropriate compiler methods for the new accessor
keyword. Extending the compiler can be quite complex
and will not be discussed any further in this article. In
the following we will only consider the existing list of
keywords and describe how they can be used to write
Score-PMC rules.
Another important change in our syntax is the function
‘m’—which was already mentioned in the previous rule
examples—that used to return the pitch-value (i.e. the
MIDI key-number) of a note. The ‘m’ function is of
primary importance as a Score-PMC search problem
ultimately deals with pitch information. Now ‘m’ is
defined as a method where the receiver or the first
argument can be any variable type defined by the score
accessor keyword. This means that the behaviour of ‘m’
depends on its first argument. For instance if a variable
is a note then ‘m’ returns a single numeric value; if the
variable is ‘:chord’, ‘:beat’, ‘:measure’, or ‘:harmony’
then ‘m’ returns a list of pitch-values (‘:score-sort’ is
somewhat special and will be discussed later). The ‘m’
method accepts also a number of optional keyword
arguments that greatly enhances the functionality of this
method. Keyword arguments can be used either to
modify or filter the result or they can return a flag (i.e.
either true or false). Currently the following keyword
arguments are supported: ‘:int’, ‘:harm-int’, ‘:min’,
‘:max’, ‘:part’, ‘:complete-case?’ and ‘:prev-item’. For
instance the ‘:int’ keyword allows to convert a list of
pitch-values into a list of intervals; ‘:min’ results in the
minimum and ‘:max’ in the maximum value of a pitch-
value list; ‘:part’ filters pitch-values so that ‘m’ returns
only a pitch-value belonging to a given part. Several of

these keywords will be discussed in more detail in
conjunction with rule examples.
The ‘:complete-case?’ keyword is more special and
needs some further explanation. When working with
compound structures consisting of several notes such as
chords, beats, measures and harmonic formations, the
search-engine calls the rules each time it encounters a
new note in the structure. Thus the rules have most of
the time to deal with partial solutions (i.e. cases where
only some of the notes belonging to the current
structure have a solution). Normally this is not a
problem as the ‘m’ method by default returns only
values that have a solution. The ‘complete-case?’
keyword is typically used only in rules where it is
required that the structure is fully solved (Section 6
gives such an example) .

4. MELODIC RULES

In the following sections we will demonstrate how score
accessors can be used to write Score-PMC rules. Section
2 gave already two simple melodic rule examples
without a score accessor keyword (i.e. in this case we
assume that all variables in the pattern-matching part
refer to notes). In this section we discuss the score
accessor keywords ‘:beat’ and ‘:measure’ which can be
used to define melodic rules where variables denote
either beats or measures.

Our first example uses the accessor ‘:beat’ and thus the
‘?1’ variable refers to a beat. This rule is applied to all
beats in the input score and therefore all beats in the
final result should fulfil this rule. The ‘m’ method
returns all pitch-values for all notes of the current beat
that have a solution. Finally the function ‘setp’ checks
that these pitches do not contain modulo 12 duplicates:

(* ?1 :beat
 (?if (setp (m ?1) :key 'mod12))
 "no mod12 pitch dups in beat")

Our next example is very similar: the only change is the
accessor which is now ‘:measure’ (i.e. all measures
should fulfil the rule):

(* ?1 :measure
 (?if (setp (m ?1) :key 'mod12))
 "no mod12 pitch dups in measure")

The next example contains two main changes when
compared to the previous one. First, the pattern-
matching part has two variables instead of one. Second,
the rule contains the keyword ‘:partnum’. This means
that this rule is applied for each measure pair only for
part number 3. The Lisp-code part checks that the
pitches in the two adjacent measures are never equal:

(* ?1 ?2 :measure :partnum 3
 (?if (not (equal (m ?1) (m ?2)))
 "no equal pitch contents in adjacent measures in part
 3")

Our last example in this section demonstrates the use of
the ‘:int’ keyword when accessing pitches from score
objects. Now we convert the pitch-value information to

intervals and the rule forbids all cases where two
adjacent measures have equal interval lists:

(* ?1 ?2 :measure :partnum (1 3)
 (?if
 (let ((ints1 (m ?1 :int t)) (ints2 (m ?2 :int t)))
 (if (and ints1 ints2)
 (not (equal ints1 ints2))
 t)))

 "no equal pitch interval contents in adjacent measures
for parts 1 and 3")

5. HARMONIC RULES

The score accessor keyword ‘:harmony’ is especially
interesting for us in this article as it allows to formulate
both harmonic and voice-leading rules in a very compact
manner. In this section we focus in examples that deal
with harmony. With the term harmony we mean here
vertical pitch formations in the score where one, two or
more notes are sounding together (in a typical case the
size of the smallest harmonic formation is equal to
two). Let us start with a simple rule that forbids any
harmonic modulo 12 duplicates (i.e. the harmonic
formations should not contain pitch duplicates or
octaves):

(* ?1 :harmony
 (?if (setp (m ?1) :key 'mod12))
 "harmonic duplicate rule")

What is interesting in our new syntax is that this rule is
very close to the first rule in the previous section. The
only change is the score accessor keyword which is now
‘:harmony’.
Our next rule demonstrates the use of the ‘:harm-int’
keyword in conjunction with the ‘m’ method. In this
case ‘m’ first sorts all pitch-values in ascending order and
after this calculates a difference list (thus the resulting
interval list contains only positive values). The Lisp-
code part states that all harmonic modulo 12 intervals
should be unique.

 (* ?1 :harmony
 (?if (setp (m ?1 :harm-int t) :key 'mod12))
 "harmonic interval duplicate rule")

The following rule is similar as it uses the ‘:harm-int’
keyword. The difference is however that now the
pattern-matching part contains three variables. Thus this
rule is applied to all sequences that consists of three
adjacent harmonic formations. The rule disallows any
harmonic interval duplicates within such a sequence.

(* ?1 ?2 ?3 :harmony
 (?if
 (let ((ch-int1 (m ?1 :harm-int t))
 (ch-int2 (m ?2 :harm-int t))
 (ch-int3 (m ?3 :harm-int t)))
 (if ch-int3
 (and (not (equal ch-int1 ch-int2))
 (not (equal ch-int2 ch-int3))
 (not (equal ch-int1 ch-int3)))
 t)))
 "3 harmonic succession duplicate interval rule")

6. VOICE-LEADING RULES

Voice-leading rules tend to be harder to formulate than
melodic or harmonic ones as they often deal both with
melodic and harmonic formations in the same rule. The
required musical context can be spread among several
parts in the score. This can lead to very difficult
situations especially if the rhythmic structure of the
input score contains complex poly-rhythms.

In this section we continue to use the ‘:harmony’ score
accessor as it often allows to capture these cases in a
compact manner.

We start with a rule that disallows any voice crossings
(thus for example all pitches in part 2 should be lower
that in part 1). This rule is quite complex as it operates
with pitch-values and part numbers. First we need to
access the current part number. This is done with the
expression ‘(partnum ?csv)’ where ‘?csv’ is a reserved
symbol that is always bound to the current search-
variable. Thus ‘p1’ contains the current part number and
we calculate a part number ‘p2’ that is below the current
one by adding 1 to the current one (we assume here that
the highest or the top-most part has the part number 1).
Next we need to access the pitch-values for ‘p1’ and ‘p2’.
This is done by giving the ‘m’ method the keyword
‘:part’ which returns the pitch-value for this specific
part. It is important to note that ‘m’ can also return (),
which means that the requested part is not existing in
the current harmonic formation. Thus we need to check
that both pitch-values are not (), i.e. that both parts are
found. (This is done in the expression ‘(and m1 m2)’). If
this is the case then we check that ‘m1’ is greater than
‘m2’. Otherwise we return t as it makes no sense
applying the rule if both parts are not present. This rule
is general and works with a score with arbitrarily many
parts.

(* ?1 :harmony
 (?if (let* ((p1 (partnum ?csv)) (p2 (+ p1 1))
 (m1 (m ?1 :part p1)) (m2 (m ?1 :part p2)))
 (if (and m1 m2)
 (> m1 m2)
 t)))
 "no voice-crossings")

Often it is interesting to use a rule that is applied only
to some of the parts. In the next rule, which is almost
identical with the previous one, we disallow voice
crossings only for two parts which are given in ‘p1’ and
‘p2’ (in our example ‘p1’ is 1 and ‘p2’ is 2).

(* ?1 :harmony
 (?if (let* ((p1 1) (p2 2)
 (m1 (m ?1 :part p1)) (m2 (m ?1 :part p2)))
 (if (and m1 m2)
 (> m1 m2)
 t)))
 "no part p1+p2 voice-crossings")

The next example demonstrates how to write a rule that
disallows any modulo 12 cross-relations between the
highest and lowest pitches in a sequence of two adjacent
harmonic formations (see Figure 2).

Figure 2. A 3-part score where cross-relations between
soprano and bass parts are denoted with arrows.

The pattern-matching part of the rule thus contains two
variables (‘?1’ and ‘?2’). As we can run this rule only if
both harmonic formations are fully solved we must first
check that the latter one (‘?2’) is finished using the
expression ‘(m ?2 :complete-case?)’. If this is the case we
extract with the keywords ‘:min’ and ‘:max’ the
minimum and maximum pitch-values from both
harmonic formations. Finally we check that these pitch-
values do not form modulo 12 cross-relations (see also
Figure 2).

(* ?1 ?2 :harmony
 (?if (if (m ?2 :complete-case?)
 (let* ((sop1 (m ?1 :max t)) (sop2 (m ?2 :max t))
 (bas1 (m ?1 :min t)) (bas2 (m ?2 :min t)))
 (and (/= (mod12 sop1) (mod12 bas2))
 (/= (mod12 sop2) (mod12 bas1))))
 t))
 "no sop/bas mod12 cross-relation")

While the previous rule was fixed for soprano and bass
parts only, the next rule can be applied for any set of
two parts. This can be accomplished with the keyword
‘:part’ (in this example we forbid modulo 12 cross-
relations for parts 1 and 3, i.e. ‘p1’ is 1 and ‘p2’ is 3).
Also here we must check whether all parts are present
with the expression ‘(and m11 m12 m21 m22)’.

(* ?1 ?2 :harmony
 (?if (let*((p1 1) (p2 3)
 (m11 (m ?1 :part p1))
 (m12 (m ?2 :part p1))
 (m21 (m ?1 :part p2))
 (m22 (m ?2 :part p2)))
 (if (and m11 m12 m21 m22)
 (and (/= (mod12 m11) (mod12 m22))
 (/= (mod12 m12) (mod12 m21)))
 t)))
 "no mod12 cross-relation in parts p1+p2")

In order to demonstrate the power of the pattern-
matching syntax we can make an interesting variation of
the previous rules by changing the pattern-matching part
to the following:

(* ?1 ? ?2 :harmony )

This minor change handles now cross-relations that
work in a context of three successive harmonic
formations—instead of two—where the rule is applied
to the first and third formations (Figure 3):

 Figure 3. A 3-part score with a ‘stretched out’ cross-
relation.

7. SCORE-SORT ACCESSOR

While the score accessors keywords presented in the
previous sections (i.e. ‘:beat’, ‘:measure’ and
‘:harmony’) are quite obvious choices for our syntax,
the compiler can be extended with more rare and ‘exotic’
cases. This section presents a ‘:score-sort’ score accessor
keyword that can be used in a similar manner than for
instance the melodic rules that were presented in the
beginning of this article.
Score-sort is an ordering of the note objects of the input
score that is used internally by the search engine. While
score-sort is normally not accessed by the user it can
have an interest in a musical context. The ordering is
accomplished as follows: We read a score from left to
right and sort notes in the order they appear in it. If two
or several notes share the same attack time, they are
sorted so that the longest notes are placed before the
shorter ones. If two or more notes have the same attack
time and the same duration, we can order them freely.
We use the convention that notes having the highest
part number are considered first. Figure 4 shows a score
and the score-sort order is shown with a curve
connecting consecutive notes. The score-sort can be
called a kind of ‘inter-melodic’ formation where the
notes—which are typically distributed between several
parts—are processed in the order they appear in a
sequence defined by the score-sort algorithm.

Figure 4. A score-sort ordering example. The ordering i s
shown with a Bezier function starting from the left-most
note in part 2 and ending with the right-most note in part 2.

A score-sort rule is written using the ‘:score-sort’ score
accessor keyword. For instance a rule where all 3 note
score-note successions should not form a major or
minor triad can be written as follows (we use here a
pitch-class set theoretical approach where ‘3-11b’ and ‘3-
11a’ stand for major and minor triads):

(* ?1 ?2 ?3 :score-sort
 (?if (not (eq-set '(3-11b 3-11a) (m ?1)(m ?2)(m ?3))))
 "no score-sort major/minor triads")

8. CONCLUSIONS

This paper presents a new syntax that allows to write in
a flexible manner Score-PMC rules that are applicable to
a wide range of musical contexts. The pattern-matching
part can be used systematically for all score accessor
types. The most complex part of the system is now
localized in the compiler which means that user written
rules are much simpler and easier to maintain than
before. New score accessors can be added by special
compilation methods.
While the new syntax is functional it is clear that there
is still much to be done. The system must be tested
with a larger corpus of rules. This task will be much
easier than before as our system allows to add
incrementally new score accessor keywords. Also the
second main component, the ‘m’ method, is easily
extensible in order to support new accessor types. The
other main issue is how this development will affect the
third main component of our constraint-based system
called Texture-PMC [7]. Here a again the dynamic
nature of our compiler should turn out to be useful.
Probably this will mean that new rhythm and texture
related accessors will be incorporated in the system.

9. ACKNOWLEDGEMENTS

The work of Mikael Laurson has been supported by the
Academy of Finland (SA 105557).

10. REFERENCES

[1] Laurson, M. PATCHWORK: A Visual
Programming Language and Some Musical
Applications. Doctoral dissertation, Sibelius
Academy, Helsinki, Finland, 1996.

[2] Rueda C., M. Lindberg, M. Laurson, G.
Bloch, and G. Assayag. “Integrating Constraint
Programming in Visual Musical Composition
Languages”, in ECAI 98 Workshop on
Constraints for Artistic Applications,
Brighton, 1998.

[3] Anders T. “Arno: Constraints Programming in
Common Music”, Proceedings of the
International Computer Music Conference,
2000.

[4] Truchet C., G. Assayag, and P. Codognet.
“Visual and Adaptive Constraint Programming
in Music”, Proceedings of the International
Computer Music Conference, Havana, Cuba,
pp. 346-352 , 2001.

[5] Anders, T. Composing Music by Composing
Rules: Computer Aided Composition
employing Constraint Logic Programming.
Sonic Arts Research Centre Queens University
Belfast, Northern Ireland, 2003.

[6] Laurson, M., and M. Kuuskankare. “PWGL: A
Novel Visual Language based on Common
Lisp, CLOS and OpenGL”, Proceedings of the
International Computer Music Conference.
Gothenburg, Sweden, pp. 142–145, 2002.

[7] Laurson M., and M. Kuuskankare. “A
Constraint Based Approach to Musical
Textures and Instrumental Writing”, In CP01
workshop on Musical Constraints, Cyprus,
2001.

