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ABSTRACT 

This paper outlines a RBF/EBF neural network approach 
for automatic musical instrument classification using 
salient feature extraction techniques with a combination 
of supervised and unsupervised learning schemes. 829 
monophonic sound examples (86% Siedlaczek Library 
[2], 14% other sources) from the string, brass, and 
woodwind families with a variety of performance 
techniques, dynamics, and pitches were used for the 
development of feature extraction, network initialization 
algorithms, and training of the neural networks resulting 
in approximately 71% individual instrument and 88% 
instrument family classification. A novel approach for 
automatically fine-tuning the system using the Nearest 
Centroid Error Clustering (NCC) method which 
determines a robust number of centroids is also 
discussed. 

1. INTRODUCTION 

Various flavors of artificial neural networks have been 
used in situations where complex problems are difficult 
to solve with a von Neumann type approach. Automatic 
musical timbre recognition is one of those areas where 
neural networks have been used to some extent. In this 
paper we have used 12 instruments with various playing 
techniques, dynamics, articulations, and pitches. The 
system was trained through Radial Basis Function (RBF) 
and Elliptical Basis Function (EBF) neural network 
models in conjunction with a number of new features 
and a novel approach for automatically finding robust 
number of centroids through “Nearest Centroid Error 
Clustering” (NCC). The system uses a standard bottom-
up model with a sampling rate of 22.05 kHz and 2 
second sample excerpts including the attack and steady-
state portions. There were 12 classes and 829 samples 
used in total as shown in table 1.  
 
Instrument Examples Instrument Examples 
Elec. bass 10 Oboe 55 

Violin 105 Bassoon 35 
Cello 102 French horn 56 
Viola 75 Trumpet 78 

Bb clarinet 100 Trombone 82 
Flute 99 Tuba 32 

Table 1. Instruments and number of samples 
 

Also, pizzicato, spiccato, sordino, vibrato/non-vibrato, 
long/sustained/short, detaché, espressivo, pianissimo, 
piano, mezzo-forte, forte, and fortissimo samples were 
present for the majority of the samples with pitches 
between 1~3 octaves.  

2. OVERVIEW OF FEATURE EXTRACTION 

2.1. Feature Extraction 
 
Feature extraction techniques both in time and 
frequency-domain were utilized. Harmonics were 
automatically picked using a custom algorithm 
extracting the first 10 harmonics of a sample [20]. The 
12 features applied in testing the RBFN/EBFN were 
spectral shimmer, spectral jitter, spectral spread, spectral 
centroid, LPC noise, inharmonicity, attack time, 
harmonic slope, harmonic expansion/contraction, 
spectral flux shift, temporal centroid, and zero-crossing 
rate. Some of the new features developed are briefly 
discussed below (see [20] for details). 

2.1.1. Harmonic Expansion/Compression 

A single number describing the expansion and 
contraction of the harmonics structure of a sample as 
shown in figure 1. This feature can be observed in 
plucked strings for example (see [20] for details) . 
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Figure 1. Harmonic expansion/compression 



  
 

 

2.1.2. LPC-Based Noise Content Analysis 

This is a feature utilizing the residual from the LPC (8th 
order was used) predicted signal and the original signal, 
and computing the SNR between the residue and original 
signal. 
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2.1.3. Harmonic Slope 

Slope between the strongest harmonic and the weakest 
harmonic magnitude values. The idea was to come up 
with a single number to represent the spectral envelope. 

2.1.4. Harmonic Flux Shift 

This method divides the STFT frames into two groups – 
the 1st group reflecting the attack part and the 2nd group 
reflecting the steady-state portion.  The difference of the 
group’s 2-norms was computed and used to describe a 
spectral flux shift. 

3. RBF/EBF NEURAL NETWORK     

3.1. Why RBFN/EBFN? 
 
RBFNs have found popularity in pattern classification in 
areas such as speech recognition and prediction [19, 16, 
3], phoneme recognition [1], and face recognition [21, 
22, 14]. Interestingly, RBFs have especially had 
noticable results in the vision community where one 
experiment showed 1.92 error percentage [7] while in 
another study using a modified RBFN, the detection rate 
was 99.25% ~ 100% [14]. Considering the impressive 
results RBFNs have had in face recognition applications, 
coupled with the fact that there have been no studies 
made with EBFNs in timbre classification and only one 
study with RBFNs [6] that we know of  it may be 
meaningful to investigate its possibilities for musical 
instrument timbre classification. 

3.2. RBFN/EBFN Characteristics 
 
The inputs of RBFN/EBFN are directly connected to 
each basis function and the output of the activation 
functions are then weighted and summed. This is unlike 
the common Multi-Layered Perceptrons (MLP) which 
have linear basis function architectures with inputs 
weighted before being summed and have sigmoidal or 
step activation functions. RBFN/EBFNs take non-linear 
input spaces and output linear activation outputs through 
a single hidden layer.  Using inherent nonlinear 
approximation properties, RBFNs/EBFNs have the 
capability to model very complex patterns, which the 

MLPs can only achieve through multiple intermediary 
hidden layers [12]. RBFN/EBFNs also have faster 
learning capacity, are easier to implement, are less 
complex in structure, and are computationally more 
efficient than MLPs.   
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Figure 2. Basic RBFN/EBFN 

 
RBFN/EBFNs are built on unique centroids (means), 
spreads (standard deviations from means), and activation 
functions. As with MLPs, weights are adjusted during 
training but in addition, the spreads and centers of each 
cluster are also updated.  For feature spaces in 2 
dimensions a circular cluster is formed for RBFs and 
elliptic cluster for EBFs; 3-dimensional spaces result in 
spherical clusters for RBFs and ellipsoids for EBFs; 
dimensions greater than 3 results in hyperspheres and 
hyperellipsoids for RBFs and EBFs respectively. RBFs 
are special cases of EBFs where diagonal covariances 
matrix are equal. 

3.3. RBFN/EBFN Activation Functions 
 
In this paper a Gaussian type activation function was 
used.  As we can observe from equation 5, figure 3, and 
figure 4 as input samples are further away from the mean 
(C1/C2 in figure 3, µ in figure 4), the activation output 
decreases exponentially. Hence patterns located at large 
distances from the mean (cluster centers) will fail to 
activate a particular basis function while maximum 
activation is achieved by data samples closest to a 
cluster’s mean. Each cluster has its own Gaussian 
distribution, mean, and spread.   
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Figure 3. RBF clusters with width 1σ and 2σ  



  
 

 

σµ +σµ −

µ

activation 
decrease

activation 
decrease

maximum 
activation 

 
Figure 4. Gaussian normal distribution 

 
The RBF basis function is defined by Euclidian distance 
r and activation function by φ (.), where px  is the input 

sample number p, jµ is the mean for cluster j, and N is 

the dimension of input vector px . 
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For EBFs the Mahalanobis distance is used for distance 
computation. For the EBF activation function we have: 
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Figure 5 illustrates the same pattern space as figure 3 but 
with the two classes having different spread 
characteristics. Class 1 uses an elliptical spread, and 
class 2 the original radial spread. It can be seen that for 
the EBF-based cluster, class membership of patterns are 
more flexible and sample P is given membership to C1 
with greater elasticity.   
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Figure 5. EBF/RBF clustering patterns 

3.4. Network Updating  
 
For network training the backpropagation algorithm was 
applied which uses the delta rule method along with 

gradient descent. The general gradient type learning 
formula for each layer is given by: 
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The objective is to adjust the weights ijw∆ to minimize 

the error E computed as the least-squares-error: 
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id  is the target,  )( p
iy the actual network output, L is 

the topmost output layer number of a general multi-layer 
network, P the number of training patterns, p pattern 
index, and N the dimension of the output space. The 
weight change ijw∆  along with a learning rate scalar 

η and network error E can then be expressed as: 
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By using gradient descent and Chain Rule approach for 
the weights, covariance/standard deviations, and centers 
respectively we get the following update equations for 
our RBF/EBF networks: 
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e is error, d target, y actual output, p pattern index; iw  
weights with center index i ; cw ηηη σ,  learning rates 
for weights, variance, and centroids; iΦ  activation; 

ijσ the standard deviations; t time index; and ijc the mean 

for centroid i ’s j th  dimension. 

3.4.1. Network Training and Initialization 

Network training is divided into two stages.  The 1st 
stage consists of guessing initial parameters for the 
means, weights, covariance, and standard deviations. 
The second stage iteratively trains the network and 
updates parameters using equations (11) ~ (15).   
 In this paper we have used the k-means method to 
compute the initial parameters. To obtain the initial 



  
 

 

weights w, 0=
w
E
∂
∂  is used to solve for w with respect to 

the total error squared E yielding (A is the activation 
output, d is known output):  
 

dAAAw TT 1)( −=                         (16) 
 

During the computation of the network’s initial means, 
spreads, and weights , problems often arise with inverse 
matrix computation. That is, issues with singular or near 
singular matrices arise, especially as the number of 
centroids increase. Generally speaking, more centroids 
achieve better results for a particular pattern space but at 
the same time also results in increased specificity leading 
to loss of generality. The size of centroids and instability 
is closely related to the inverse matrix operation 1)( −AAT . 
This is in part due to centroids with very small spreads. 
Singular value decomposition [11] estimation was 
applied to improve this issue. EBFNs are particularly 
prone to singularity problems due to the additional 
requirement of the inverse covariance matrix in the 
Mahalanobis distance algorithm. The cause of instability 
is again some centroids’ spreads becoming too small or 
even singular. After trying out different approaches for 
improving the singularity issue it turned out that the best 
way (at least in this study), and consequently the 
simplest way to get more stable performance was 
identifying and purging centroids with extreme spreads 
(small and large) during the initialization phase, 
generally small in number.   

3.5. Further Fine-Tuning: Nearest Centroid Error 
Clustering (NCC)  
 
At the end of the day, neural network classification is 
improved through fine-tuning. In this study the final 
stage for further fine-tuning after k-means was achieved 
through NCC. The idea basically exploits the 
observation that errors occur between class boundaries. 
Figure 6 shows misclassified data (synthesized) in a 3-
class system (001, 010, 100) after k-means and network 
training. 
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Figure 6. Initial training with a 6 centroid RBFN 

For this problem the initial training (k-means + training) 
does a good job in the classification task (94%) with 
errors occurring in areas where class boundaries overlap 
or are close together. By placing additional smaller 
centroids at those problematic locations automatically, it 
is possible to improve the performance of the network 
after further training – an additional fine-tuning and 
training stage concentrating on localized regions with 
smaller centroids. This in essence is the basic idea of the 
NCC method. The algorithm determines the locations of 
“problematic areas” using information from “mother 
centroids” (original 6 mother centroids for this example) 
and spawns new smaller children centroids nearest to a 
particular mother centroid. The mother centroids are 
used as guides as they are already “roughly tuned” to a 
particular pattern space. Although blindly increasing the 
number of centroids is an option for better performance, 
there is no consideration of the error feedback reflecting 
the pattern space. The NCC method on the other hand 
achieves rapid and more consistent increase in 
performance utilizing learned information about the 
pattern space – automatically.  
 As seen on the left of figure 7 the error pattern and 
mother centroid which render the minimum distance is 
initially chosen. Once the error pattern p and mother 
centroid j is selected, the new child centroid pertaining 
to pattern p inherits the mother’s spread σj. The mother’s 
spread σj is then used to find any encompassing error 
pattern neighbors satisfying the general case 
hyperellipsoid (17).  If any error pattern members are 
found within σj, a new spread/center is computed via the 
arithmetic mean of its members (18). In the above 
example, the new child centroid has one “sibling.” On 
the other hand if there is only a single member within 
spread σj, the new child’s spread is just scaled linearly to 
decrease its span of influence through (19).   
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This process is repeated and new centroids with reduced 
spreads and new “error-pattern-influenced” centers are 
obtained automatically. In order to resume training the 
network with the additional children centroids has to be 
re-initialized. The weight re-initialization was achieved 
via (16). Figure 9 shows the final centroid configuration 
after NCC and retraining at 100%. 
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Figure 7. Spawning a new child centroid 
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Figure 8. Spawning of new centroids 
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Figure 9. Final centroid configuration: 100%  

 
This additional fine-tuning method could be applied a 
number of times until a desired performance is achieved.  
However, due to the mechanics of the algorithm, there 
will usually be an increase in the number of total 
centroids, resulting in over-fitting issues. A partial 
solution to over-fitting was to make it optional whether 
to include “single-member” children centroids as these 
tend to address only very localized error patterns. This 

methodology not only lessened the overall increase of 
centroids (generally a good idea), but also only included 
those new children centroids that had at least two 
members associated with it.   

4. CLASSIFICATION RESULTS 

The feature extraction algorithms were thoroughly tested 
with all of the samples and verified manually whenever 
possible. As we see below (table 2, 5) certain feature 
combinations worked better than others. To determine 
the best feature sets for a particular network, a process 
starting out with all 12 features and eliminating those 
features that gave poorest results was applied until no 
further improvements were made. The system’s 
classification performance and training was conducted 
using 80% of the total 829 samples for network training 
and the remaining 20% of samples for cross-validation. 
Each new training/classification session was subjected to 
a pattern shuffling scheme. Family and individual 
instrument classification and training was done 
separately with independent RBFN/EBFNs.  

4.1. Instrument Family Classification 

For the family recognition task three families were used 
– strings, woodwinds, and brasses. As we see in table 4 
and 5 system performance without cross-validation tends 
to be about 10% higher. This is likely a case of pattern 
over-fitting most noticeable with the all inclusive NCC 
algorithm. The best performance for family recognition 
was approximately 88% for RBFNs after NCC. Figure 
10 shows the confusion matrix run on all the data 
samples. 
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Table 2. Feature set selection for instrument family 

 
RBFN EBFN  

Normal NCC Normal NCC 
Correct (%) 78 97 81 92 
# of features 9 9 9 9 
#of centroids 50 132 50 124 
# of epochs 2000 1500 2000 1500 
Table 3. Training for families without cross-validation 
 
 
 
 



  
 

 

 
RBFN EBFN  

Normal NCC Normal NCC 
Correct (%) 73 88 85 85 
# of features 9 9 9 9 
#of centroids 45 54 40 57 
# of epochs 2000 1600 9000 7000 

Table 4. Family recognition with cross-validation 
 
Figure 11 shows the binary version of the confusion 
matrix (correct or incorrect). From the graphs we can see 
that the least confusion for string instrument 
classification was with brasses and a little confusion 
existed in the case of the network misclassifying some 
instruments as woodwinds.  
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Figure 10. Confusion matrix for instrument family  
 
The last group in figure 10 reflects the confusion of the 
system when reacting to brass instruments. In the brass 
section, we can note that the network had noticeable 
confusion with string instruments but also substantial 
errors with woodwind instruments. The French horn was 
the main cause for performance degradation for family 
classification and also individual instrument recognition 
as we will see below. 
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Figure 11. Confusion matrix for instrument family  

4.2. Individual Instrument Classification 

Tables 6 and 7 summarize the 12 individual instrument 
classification results. As in family classification, training 

without cross-validation resulted in superior system 
performance.  However, with cross-validation the best 
performance for RBFNs was approximately 71% and 
67% for EBFNs.   
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Table 5. Feature set selection for individual instrument  
 

RBFN EBFN  
Normal NCC Normal NCC 

Correct (%) 70 95 78 97 
# of features 8 8 8 8 
#of centroids 45 214 35 199 
# of epochs 3000 2000 3000 2000 

Table 6. Training for individual instruments without 
cross-validation 

 
RBFN EBFN  

Normal NCC Normal NCC 
Correct (%) 57 71 63 67 
# of features 8 8 10 8 
#of centroids 45 59 38 74 
# of epochs 10000 8000 10000 8000 
Table 7. Individual instrument recognition with cross-
validation 
 
Figure 12 shows the binary confusion matrix (soft 
confusion matrix could not be fitted into this paper, see 
[20] for details). For brasses such as the trumpet, the 
network confused it mostly with the clarinet. French 
horn classification was again the poorest at 32%. The 
best results were for the tuba (last row) at 91% with 
most of its errors within its own family and the electric 
bass. Interestingly, for the brass instruments more than 
the usual cross-family error observations can be made 
(excluding the tuba).  

5. DISCUSSION 

The initial studies show that the system recognizes 
instrument families with fewer errors than individual 
instruments, which is congruent with human 
performance tendencies. This is hardly an unexpected 
discovery, but nevertheless a confirmation that the 
system is generally behaving in a predictable manner.   

The best performance for family instruments was 
approximately 88 percent using RBFNs with feature set 
shimmer, jitter, spectral spread, spectral centroid, 



  
 

 

harmonic slope, LPC noise content, harmonic 
expansion/contraction, temporal centroid, and zero-
crossing rates.  EBFNs did not do quite as well. 
However, EBFNs were not exhaustively tested due to 
time constraints imposed by the additional 
computational load and instability of the EBFNs 
developed in Matlab. The majority of the instability for 
the EBFNs had to do with singularity or near-singularity 
issues discussed above.   
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Figure 12. Confusion matrix for individual instruments  
 
New features such as harmonic slope, LPC noise 

content analysis, and harmonic expansion/contraction 
have also shown to improve classification of the neural 
network and as the experimental results show, it was 
possible to robustly increase the network’s performance 
using NCC starting with a relatively low number of 
centroids and jumping to a higher centroid configuration. 
Blindly increasing the number of centroids without NCC 
generally did not result in acceptable performance and in 
most cases introduced instability making the higher 
order networks impossible to use. For individual 
instruments the best performance was 71% using RBFNs 
and 67% for EBFNs. The inferiority of the EBF 
networks was rather a surprise as initial tests, albeit on 
synthesized two-dimensional pattern spaces resulted in 
better performance. With careful control of centroid 
widths perhaps the more flexible EBFNs could be 
trained to produce better results. 

Revisiting the confusion matrix for individual 
instruments it is apparent that the system has difficulty in 
classifying French horn timbres. However, classification 
for the other brass instruments was on the average better 
than the other families. Also, the brass instruments 
except for the tuba (all its errors were within its family), 
especially the trumpet and trombone had their errors 
outside their family in the strings and woodwinds groups. 

Although the first reaction may be that this result is a 
“serious network classification problem,” it may not 
necessarily be an undesirable result. For the French horn 
for example, most of the confusion occurs with the oboe 
(10 patterns, especially with long forte notes), flute (6), 
and cello (5). Although further research needs to be 
conducted, it is generally the case that improving “cross-
family” misclassifications of instruments is relatively 
easier than “within-family” misclassifications. However, 
it remains to be seen if additional features or adjusting 
existing features will indeed improve classification.  

Additional observations were made which illustrated 
that classification is dependent on dynamics and 
techniques used (details can be found in [20]). One 
rather surprising result in this study shows that in a 
number of cases, the system’s performance was better 
for samples that used some variation of “short-note 
techniques” such as staccato and pizzicato notes. The 
findings also implicate that the system may work well 
with percussive instruments especially those percussive 
instruments that are pitched, this however remains to be 
seen. Also, sordino and espressivo techniques seem to 
confuse the system. However, not all instruments 
adhered to the aforementioned trends.   

Comparing the developed neural network system 
with other artificial systems it is possible to note some 
similarities and differences in performance as well as 
testing environment.  For k-NN based models, Fujinaga 
[9], Fujinaga & McMillan [10], Martin & Kim [18], 
Eronen & Klapuri [8] reported 50.3% (1338/23), 68% 
(1300/23), 70% (1023/15), and 80% (1498/30) 
performance (samples/classes) respectively for 
individual instruments which are similar to the rates 
obtained with this neural network model (pitch 
information was provided in [8]). For other neural 
network systems such as the one used by Kaminskyj 
cited by Herrera-Boyer [13] a high 90-percentile 
performance was reported. However, the number of 
instruments (4) and number of samples (240) employed 
to evaluate the neural network seem to be less-than-ideal 
to confidently make an assessment. The same is true for 
Cemgil [6] who has had seemingly impressive results 
with 94~100% accuracy using only 40 samples classified 
into 10 classes. Kostek reported 97% for correctly 
classifying bass trombone, trombone, English horn, and 
contra bassoon [15]. However, the pitch information was 
provided to the system and training patterns and cross-
validation patterns came from the same stereo audio file 
– one channel for training and the other channel for 
cross-validation. 

The preliminary research results in this paper 
demonstrate that with appropriately trained RBF/EBF 
networks via salient features it is possible to design an 
ANN system to automatically recognize musical 
instrument sounds.  The studies also show that machine 
performance outperforms or are similar to human 
counterparts in comparable testing environments – 
46%~67%[17], 72%[5], 85% [4] for 27, 6, 4 instruments 
respectively. However, the results should be taken with a 



  
 

 

grain of salt, as the number of different examples for 
each instrument was limited in breath –86% of the 
samples came from a single library [2], although other 
samples from personal collections and from the Internet 
were used in training and evaluating the system 
(clarinets, flutes, and electric bass – 14%).  
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