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Abstract. This paper deals with actuator faults detection and isolation for an actuated seat
described by Takagi-Sugeno multiple models. The goal is to ensure the comfort and the security
of the users in simulator applications. Sliding mode observers based on T-S models are designed
to estimate the system state vector. Residuals are generated by the comparison of measured
and estimated outputs. In this work, a multi-observers technique is used. It consists of the
construction of many observers such that each observer must be robust to noises and to other
uncertainties but sensitive to one actuator fault. Simultaneous faults occurring on the actuated
seat can be detected and isolated using this method. Simulation results are given to show the
effectiveness of this approach.

1. Introduction

Nowadays, multimedia space simulators (flight simulator, automotive, video games ...)
overgrown the field of new technologies. Users spend several hours a day on their chairs in
front of the screens. For simulators, the user is in general installed on an articulated mobile
platform equipped with an instrumented seat, a joystick and one or more wide-screen. For
example, to be an efficient racing simulator, the user has to feel every sensation as in real
situations, such as acceleration, braking or jumps.
In this study, which is part of an industrial project 1, we are interested in the diagnostic of the
seat for such applications. Indeed, the seat is instrumented in a confined space and it has to
ensure the comfort and the security of the users. Such systems integrate actuators, sensors and
embedded intelligent systems (control, optimization, supervision, ...) whose aim is to increase
their performances. This context is motivating the present diagnostic study with application on
an actuated seat which can be seen as a robot with tree structure. Due to high reliability demands
of such systems, recent supervision and fault diagnosis concepts are of particular importance
[16]. There are three main approaches to deal with fault diagnosis [15], [12], [19], [10], [2]:

• Signal analysis-based approach,

• Knowledge-based approach,

1 Confidentiality has been contracted with the industrial company, therefore, its name and the studied application
can not be provided in this paper. All the parts of this contract has read this paper and agreed to its publication.



• Model-based approach.

Model-based approaches to fault diagnosis in dynamic processes have received considerable
attention since the beginning of the 70’s, both in the research context and in the domain of
application on real processes [16], [9], [14], [11]. These model-based fault diagnosis systems are
structured on two levels:

• Residual generation: Its purpose is to generate a residual signal which is sensible to a fault.

• Decision making: The residuals are examined for the likelihood of a fault and a decision
rule is then applied to determine if some fault appears.

Most of model-based fault diagnosis methods are based on linear system models. For nonlinear
dynamic systems, the fault diagnosis problem has been traditionally analyzed in two steps: First,
the model is linearized around an operating point, and second, some techniques are applied to
generate signal-residual, e.g. Kalman filter, observers, parity relations, parameter estimation
[12]. Among nonlinear observers, T-S fuzzy model-based approaches have become popular,
because such models provide universal approximations of nonlinear systems. Therefore in the
past few decades, T-S fuzzy models have been the subject of many theoretical studies (e.g. [24]
[22]) and applications (e.g. [13], [20], [21]). The major interest of such modelling approaches is
that they allow extending some linear observer or controller design methodologies to nonlinear
systems. In this work, we consider the model-based approach and the technique used in [1], in
order to deal with the fault diagnosis problem. The strategy is based on obtaining a Takagi-
Sugeno (T-S) fuzzy model and then using sliding mode observers to estimate the system state
vector; the residual signal is then generated by the comparison of the measured and the estimated
outputs. Observers based diagnosis is a technique that has been much discussed in the literature
[17], [4], [25], [10], [3]. Without the occurrence of a faults, the residuals are close to zero while
they deviate significantly from zero upon the occurrence of a faults on the system. The detection
of the faults is generally quite easy; however, their localization is more delicate. Therefore, one
frequently uses multi-observers to generate the residuals, whose are analysed through logical
decision rules to find the location of the faults.
The paper is organized as follows: In section 2, the dynamical model of the seat and the
corresponding Takagi-Sugeno fuzzy model are described. In section 3, we design a fuzzy sliding
mode observer for the actuator fault detection and isolation. In section 4, simulation results
show the effectiveness of the approach.

2. Description and modelling of the actuated seat

In this paper we will consider the diagnostic of an empty actuated seat, depicted in figure 1.
That is to say, without considering the interaction with the user, which can be considered as
modelling uncertainties and external disturbances. Therefore, in this preliminary study, one
assumes that the robustness of the following designed observers will handle such uncertainties.
The actuated seat contains three actuated joints r1, θ3, θ4 and one unactuated joint θ2, whose
significations are given in Table 1 (r1 is a prismatic joint, θi (j = 2,3,4) are rotary joints).

To synthesize the relevant observers, dynamical model of the seat is required. It is given as
the following second order mechanical system :

J (q(t)) q̈(t) +D(q(t), q̇(t))q̇(t) +G(q(t)) = u(t) (1)

where q(t) = [r1 θ3 θ4]
T is the vector of generalized coordinates, J(q(t)) is the inertia matrix

(symmetric and positive definite), D(q(t), q̇(t)) is the matrix of Coriolis and centrifugal forces,
G(q(t)) is the vector of gravitation and u(t) is the vector of the generalized forces produced by



  

Figure 1. Different joints of the seat.

Table 1. Joints significations

r1 Tracking position expressed in m
θ2 Angle of the seating expressed in rad
θ3 Angle of the legrest expressed in rad
θ4 Angle of the seat-back expressed in rad

the actuators. The control input u is assumed to be given by some known feedback controllers.
For lightening the mathematical expressions, the time t will be committed in the sequel when
there is no ambiguity. The matrices of the model, obtained from the Lagrange formalism [18],
are detailed as follows:

J(q) =


M (∗) (∗)

m3L3 sin(β − θ23) J3 0

−m4L6 sin(β − θ24) 0 J4



D(q, q̇) =


0 −m4L3 cos(β − θ23)θ̇3 m6l6 cos(β − θ24)θ̇4

0 0 0

0 0 0



G(q) =


−Mg cosβ

−(gm3
L3
2 ) sin(θ23)

−(gm4
L4
2 ) sin(θ24)


where θ23 = θ2 + θ3; θ24 = θ2 + θ4; M is the total mass of the seat; m3 and m4 are re-
spectively the masses of the footrest and the headrest of the seat; L3 and L4 are respectively
the lengths of the footrest and the headrest of the seat; β is the angle between the seat tracking
axis and the horizontal plane; g is the gravitational acceleration.

Note that θ2 is an unactuated joint, which is not considered as a generalized coordinate since
it is geometrically linked to the prismatic joint r1 by means of a guide (constrained regarding
to the mechanical design of the seat). Therefore, the nonlinear relation between θ2 and r1 has



been approximated from experimental measurements (see Figure 2) as a third order polynomial
given by:

θ2 = ar31 + br21 + cr1 + e (2)

where a = −36.54, b = 1.079, c = 1.49 and e = 0.1.
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Figure 2. Approximation of θ2 by a third order polynomial

2.1. State space dynamical model of the seat and Takagi-Sugeno modelling

Let us consider the state vector x = [q q̇]T and the control input u = [u1u2u3]
T , the model (1)

can be rewritten as the following nonlinear state space model:{
ẋ(t) = A(q, q̇)x(t) +B(q)u(t) + Fd(t)

y(t) = Cx(t)
(3)

with

A(q, q̇) =

[
03 I3

−J(q)−1Ḡ(q) −J−1(q)D(q, q̇)

]

B =

[
03

−J(q)−1

]
where Ḡ(q) ∈ R3×3 is defined such that G(q) = Ḡ(q)q; F and C are constant matrices of appro-
priate dimensions and d(t) is an unknown input vector containing external disturbance or faults
in the system.

Let us notice that all the nonlinear terms included in the matrices of the state space model
(3) are bounded (since r1, θ3 and θ4 are physically bounded and chosen such that they do not

cross zero) and given by: fJ1 = sin(β − θ23), fJ2 = sin(β − θ24), fG1 = 1
r1

, fG2 = sin(θ23)
θ3

,

fG3 = sin(θ24)
θ4

, fD1 = cos(β−θ23)θ̇3 and fD2 = cos(β−θ24)θ̇4. Therefore, a Takagi-Sugeno model



(4), which exactly matches the nonlinear model (3), is obtained by applying the well-known
sector nonlinearity approach [23].

ẋ(t) =

r∑
i=1

hi(z(t)) (Aix(t) +Biu(t) + Fd(t)) (4)

where z(t) is the premise vector assumed to depend only on the state variables, r is the number
of fuzzy sets for the right-hand side of the system (4), respectively; hi(z(t)) ≥ 0 are the mem-
bership functions that satisfy the convex sum property:

∑r
i=1 hi(z(t)) = 1.

Note that, the above described T-S model contains 64 rules, therefore the matrices
constituting the local subsystems and the membership functions are not detailed here for space
reason. The reader may refer to [23] for more details on how to apply the well-known sector
nonlinearity approach. Nevertheless, to illustrate the effectiveness of proposed T-S modelling
approach, simulations of the seat have been performed in Matlab/Simulink to show that the
T-S fuzzy model of the seat represents perfectly the nonlinear model, see Figures 3, 4 and 5.

Figure 3. Comparison of the nonlinear model of the seat and its T-S model:
tracking and seating position. – – – T-S Model, —— Nonlinear model



Figure 4. Comparison of the nonlinear model of the seat
and its T-S model: legrest position. – – – T-S Model, ——
Nonlinear model

Figure 5. Comparison of the nonlinear model of the seat and
its T-S model: seat-back position. – – – T-S Model, ——
Nonlinear model

3. Synthesis of the sliding mode observer

The goal is now to design convenient observers dedicated to the diagnosis of the seat actuators
faults. From the model-based approach, it is necessary to build the mathematical model of the



system that is to be observed. In the general case of nonlinear dynamic systems, the design
of observers is not an easy task. Therefore, in this work we consider the Takagi-Sugeno fuzzy
model described in (4) and derived from (3).
It is assumed that the T-S fuzzy model (4) is locally observable and our goal is to design an
observer such that x(t)− x̂(t)→ 0 as t→∞, where x̂(t) denotes the estimated state vector. In
this work, one considers an adaptation of the fuzzy sliding mode observer design methodology
proposed in [8] to the T-S model of the actuated seat. This method uses a number of local linear
time-invariant observers; each local model represented by (4) is associated with a local observer
given as follows: {

˙̂x(t) = Aix̂(t) +Biu(t) + Fid(t) + Li (y(t)− ŷ(t)) + φi(t)

ŷ(t) = Cix̂(t)
(5)

where Li is the observer gain and φi is the discontinuous vector of sliding mode which will be
defined later.
By the use of the Parallel Distributed Compensation (PDC) technique [9], the total state
estimation is the combination of local observer outputs.{

˙̂x(t) =
∑r

i=1 hi(z(t)) {Aix̂(t) +Biu(t) + Fd(t) + Li (y(t)− ŷ(t)) + φi(t)}

ŷ(t) =
∑r

i=1 hi(z(t))Cix̂(t)
(6)

To analyze the convergence of this observer, the state estimation error e(t) = x(t) − x̂(t) dy-
namics is examined:

ė(t) = ẋ(t)− ˙̂x(t) (7)

Using (4) and (6), one can find:

ė(t) =
r∑
i=1

r∑
j=1

hi(z(t))hj(z(t))
[
Āije(t) + Fid(t)− φi(t)

]
(8)

where Āij = Ai − LiCj .
One chooses the following Lyapunov function:

v(t) = eT (t)Pe(t) (9)

Deriving:
v̇(t) = eT (t)P ė(t) + ėT (t)Pe(t) (10)

Using (8), one finds:

v̇ = eTP
∑r

i=1

∑r
j=1 hi(z(t))hj(z(t))

(
Āije+ Fid− φi

)
+∑r

i=1

∑r
j=1 hi(z(t))hj(z(t))

(
Āije+ Fid− φi

)T
Pe

=
∑r

i=1

∑r
j=1 hi(z(t))hj(z(t))

{
eT (PĀij + ĀTijP )e+ 2eTPFid− 2eTPφ

} (11)

Then:

v̇(t) ≤ −γ ‖e(t)‖2 +

r∑
i=1

{
2
∥∥eT (t)P

∥∥ ‖Fid(t)‖ − 2eT (t)Pφi(t)
}

(12)



In order to have v̇(t) < 0, we propose that the discontinuous term has the following form:

φi(t) = kisign
(
eT (t)P

)
= ki

eT (t)P

‖eT (t)P‖
(13)

where ki > 0 is constant and P > 0 so that the following Lyapunov inequality is satisfied:

PĀij + ĀTijP < 0 (14)

From this, limt→∞e(t) = 0 if (12) and (13) are respected, therefore if:

2
∥∥eT (t)P

∥∥∑hi(z(t)) {‖Fid(t)‖ − ki} < 0 (15)

then one obtains the following condition:

ki > ‖Fid(t)‖ (16)

Furthermore, it should be mentioned that an observer with converging state estimation is con-
sidered as a stable observer. Nevertheless, its stability may be checked, for valisation purpose,
from a well-known bounded real lemma (stability conditions) [23]. These conditions come from
the inequalities (14), which can be efficiently solved via convex optimization algorithms within
the linear matrix inequalities (LMI) framework [7]. Moreover, from the solution of such LMIs,
the observer gains Li can be obtained as in [1]. Hence, if a positive definite matrix P exists, the
sliding mode fuzzy observer (6) is defined.

Finally, once the state or output is estimated, the residual signals are generated by the
comparison of the measured and estimated output.

r(t) = y(t)− ŷ(t) (17)

Therefore, analysing the residuals, one may detect and isolate actuator faults. Indeed, to detect
and isolate the actuator faults, a set of three observers is used such that each observer is sensitive
to one actuator fault [5], [6]. So the ith observer will have as inputs y and ūi which is the vector
of inputs without the ith input ui. This structure is presented in Figure 6 for the actuator fault
detection and isolation. In the considered seat, a set of three observers for each actuator is
sufficient. Each observer generates one residual which is sensitive to only one actuator fault.

OBS 1

OBS 3

4u

Actuators System Sensors

u3 

res1

res3

.

.

.

Figure 6. Multi-observers for actuator fault detection and isolation.



4. Simulation results

Simulations trials have been performed in the absence of faults, thresholds can be set on the
basis of the maximum absolute values of the residuals . If some faults occur, they will cause
deviations from zero of some residuals much greater than the differences caused by uncertainties
and measurement noises. Thresholds should be chosen correctly in view to reduce the false
alarms and the non detections. In our case, we assume that uncertainties and measurements
noises do not have a great influence on the residuals. For our simulations, thresholds are chosen
as +/− 0.5 meters for the residual res1, related to the prismatic joint r1, and +/− 0.5 radians
for the residuals res2 and res3, respectively related to the rotary joints θ3 and θ4.

To show the effectiveness of the approach, some scenarios for some actuator faults are
simulated using Matlab/Simulink. Figure 7 shows that the first residual res1 is sensitive to
the prismatic joint actuator fault where the other residuals are not sensitive. Figure 8 shows
that the second residual res2 is sensitive to the seat legrest rotary joint actuator fault while the
others are not sensitive to this fault. Residuals res3, res4 and res5 are sensitive to the seat
footrest, the seat-back and the seat headrest actuator faults respectively. Figure 9 shows that
we can detect the seat-back and the tracking actuator faults simultaneously.

Figure 7. Detection of the tracking actuator fault.
– – – thresholds, —— residuals

Figure 7 shows the sensitivity of the first residual to the actuator of the first joint. This
fault consists of blocking of the actuator several times at the instants 5s, 12.5s, 15s and 18.2s
respectively. Similar fault is simulated for the actuator of the rotary joint 2 and detected by the
second residual as it is shown by the Figure 8. Finally, simultaneous faults are simulated for
the first and the third actuator and detected by the two residuals res1 and res3 as is shown in
figure 9.



Figure 8. Detection of the legrest actuator fault.
– – – thresholds, —— residuals

Figure 9. Detection of simultaneous faults : seat-back and
tracking actuator. – – – thresholds, —— residuals

5. Conclusion

In this paper an analysis for fuzzy sliding mode observer based FDI applied to a Takagi-Sugeno
fuzzy model of an actuated seat has been presented. A multi-observers approach is used to
generate residuals that allow us to detect and to isolate actuator faults. In the actuated seat,
considered as a robot with tree structure, it is important to detect the faulty actuator and then
to reconfigure the control law. The effectiveness of the approach allows avoiding false alarms and
non detections. Because of decentralization of actuators, we notice that each residual is sensitive
to only one actuator fault. These residuals are presented as fault signature. Five observers are



used and each of them is dedicated to only one actuator. Therefore, five residuals are obtained
and each of them is sensitive to only one actuator fault. Simulation results show that each
residual generated by the sliding mode observers is sensitive to only one actuator fault. All
real systems have uncertain characteristics, and cannot be modelled perfectly. Therefore, one
has considered some bounded modelling uncertainties. In the simulation results we can observe
that robustness is achieved under parametric variations of the system. Residual only depend of
external inputs or fault in the system. Therefore, the sliding mode technique provides a way to
find a possible solution to this problem.
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