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Abstract

In ancient Greece, people carried a single name, and some names were quite common,

while others were very rare. If these names were used to distinguish people, why didn’t

everybody have a different name? Looking into the manner in which the ancient Greeks

picked names, we develop an economic model for the existence of names, as a way of

exchanging identification information. Considering different information frameworks, we

justify the exchange of names in this context as the best system in order to promote

cooperation. We then study the optimal choice of names in these conditions and show that

the impact of strategic naming on the distribution of names works as an alteration of existing

mean-field approaches to name dynamics, which converge to power laws. Strategic naming

adds a degree of freedom in the relationship between the observed number of names and the

shape of the power law distribution. Confronting these results to empirical data from the

archaic and classical periods, we observe that a form of conformist strategic naming could

account for the particular shape of the name distribution in Ancient Greece, which differs

from contemporary data.
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laws
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Some ancient Greek names have acquired worldwide fame, and are nowadays still given to

children. Achilles, Hektor, Demosthenes, or Alexandros are firmly inscribed in European history

and literature. These famous names were often given to children already in ancient times, and

there are hundreds of epigraphic sources referring to some Achileus or Demosthenes across Hellas.

Many other names, scarcer, were also given, of which we have only found a handful of instances

in the epigraphic or literary record. In classical Greece, there were no family names as we know

them today, but single names, sometimes associated to a political group (such as a deme in

Athens), and as a result, for all matters and purposes, some people had the same name as many

others, while others did not. Why was there such variability in the nature and effective function

of the ancient Greeks’ names? If unique names were helpful in identifying people, why did not

everyone carry a different name? To understand how names were given, we will need to explore

how they were used.

Onomastics, the study of names, and prosopography, the study of individual life histories are

important facets of ancient Greek history. Names and individual identification have been used to

more precisely follow the history of members of the elite, as Puech (2012), Karila-Cohen (2017)

and Karila-Cohen (2019) have done. Studying names and how they were attributed has also

allowed historians to better grasp the extent of families, as in Bresson (1981), Herman (1990) and

Bresson (2019). Using names from epigraphic sources may also help in measuring the reliability

of some historical accounts, as Hornblower (2010) proposed to do in the case of Thucydides.

As was discussed in Gauthier (2021), there has been a very substantial effort with the LGPN to

collect, and later digitalize, data from hundreds of thousands of inscriptions relating to names in

the ancient Greek world. Thanks to the availability of this data, some research has focused on the

network aspect of the family relationships based on the names in the inscriptions, such as Cline

(2020), Karila-Cohen (2016) and Karila-Cohen (2018). Nevertheless, the historical approach has

tended to focus on particular areas, or on particular families, rather than consider names at a

much larger scale1. Historical approaches have not either looked specifically into the reasons why

some names may have been more common than others.

Our goal in this paper is to apply an economic approach to the understanding of ancient Greek

names, in order to address both the scale of data, as well as the logic for distributional features

of this data. We will hence focus on accounting for the distribution of names, as well as naming

strategies. More precise uses of names could be studied, in particular by focusing on their

1As indicated in Gauthier (2021), obtaining the LGPN data in bulk is quite difficult, and this may explain the
scarcity of research that could rely on the entire dataset.
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semantics2, but the first step consists of analyzing these ancient Greek names in bulk, which has

not been done to date, either from a theoretical nor empirical perspective.

We may wonder what economics could have to say about something as un-economic sounding as

a name. As a matter of fact, the notion of identity in economics spans a wide range of related

concepts. Berg (2019) gives an overview, and for our purposes we can determine that there are

three connected axes in this body of research with applications or concepts that are useful for

onomastics: group behavior (in the sense of club goods), identity stricto sensu, and conformity.

Carr and Landa (1983) considered the benefits of belonging to a group in reducing transaction

costs through the enforcement of certain rules, and imposing costs on breaching them. They

showed with a simple model how one could account for clans, symbols or family and name as

club goods. Depending on various conditions on the cost of informing other group members and

the cost of contract breaches, they established an equilibrium for the optimal club size. While

the way in which the groups are defined is related to notions of identity, they did not specifically

look into defining identity from an economic standpoint. A precise definition of identity was

given by Akerlof and Kranton (2000), who proposed to extend a basic utility function to account

for their notion of identity: people benefit more from partaking in activities that are line with

the prescriptions of their chosen identity. They derived various equilibria, where varying shares

of the population choose a particular identity. Not following the prescriptions of one’s identity is

costly to oneself, because, as they argue, rules are internalized psychologically, and breaching

them creates anxiety. Breaching identity-prescribed rules is also costly to others: by observing

someone’s breaking the rules it arouses emotions that were suppressed in order to internalize the

rules in the first place. Their model explains behaviors that could otherwise appear anti-economic.

The notions of identity and group belonging are also strongly connected with conformity, which

was studied by Bernheim (1994) and extended and formally clarified by Gillen (2015). In this

approach, the utility functions of agents of various types include a term for status, which at

equilibrium is itself a function of type. In certain conditions, when status plays an important

role in utility, then there is an endogenous pooling equilibrium where many agents follow the

same action, while only those with extreme preferences have incentives to stray (and receive a

lower status). Some experiments have been carried out and showed that conformity affected the

outcome of public goods games, as reported by Carpenter (2004).

Names have also been extensively studied in statistical physics. Several publications following

2Adressing methodological issues in the study of names, Motschenbacher (2020) has called for the study of
names in the context of their use, that is from a linguistics perspective, more than simply studying their frequencies
and differences.
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physical sciences inspired methods have indeed examined the distribution of names, whether they

be family names or given names. As with many social phenomena, the patterns of family name

distributions match power laws. Zanette and Manrubia (2001) showed that these distributions

exhibited an exponent of 1 (at the density level), and proposed a simple random growth model

accounting for this behavior. Baek, Kiet, and Kim (2007) and Maruvka, Shnerb, and Kessler

(2010) applied population dynamics models in order to account for the growth in number and

distribution of family names. The first paper shows that the shape of family names distributions

(generally power laws) can be explained by the way the rate of introduction of new names is

expressed. Some other studies carried out purely empirical analyzes of some specific aspects of

names distributions, such as dynamics or correlation, in particular Hahn and Bentley (2003),

Mateos, Longley, and O’Sullivan (2011), Barucca et al. (2015) and Lee et al. (2016), who looked

at given names. Following more of a psychological perspective, Busse and Seraydarian (1977),

Young et al. (1993), and Rogerson (2016) focused on some of the implied identity in names. For

example, the experiments conducted by Young et al. (1993) showed that people of a younger

generation tended to associate first names from an older generation to lesser intelligence and

popularity.

In order to tackle the analysis of ancient Greek names, we will first examine the historical context

in which names were used at the time. We then develop a model for the optimal behavior that

people will adopt with each other as a function of the unique information they have about their

counterparty: their name. Considering different information frameworks, we justify the exchange

of names in this context as the best system in order to promote cooperation. Then, we will be

in a position, relying on that model, to study the optimal choice of names for children, given

that equilibrium. With some simplifications, we show that the impact of strategic naming on

the distribution of names works as an alteration of the typical mean-field approaches to name

dynamics, which converges to a power law. Strategic naming adds a degree of freedom in the

relationship between the observed number of names and the shape of the power law distribution.

Finally, we confront these reulsts with empirical data from the archaic and classical periods. We

show that a form of conformist strategic naming could account for the particular shape of the

names’ power law distribution in Ancient Greece, which has a parameter around 1.3. This shape

is in stark constrats with what has been observed in the large majority of empirical studies on

contemporary name distributions, where the parameter was either close to 2 for most countries,

or at 1 for Korea.
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1 Ancient Greek Names in Context

We begin by addressing the issue of the effect of child mortality on the surviving literary and

archaeological traces of names, and then discuss the manner in which names were used and

exchanged in ancient Greece.

One potential issue in understanding name choices in ancient Greece is indeed whether necronymy,

giving a child the name of a prior child who had passed, was common or not. The very high

child mortality compared to modern standards, depending on the practice of necronymy, could

contribute to a randomization of name choices. The epigraphic sources amost exclusively refer

to adults or adolescents, and as a result the names we get to observe are not an unbiased

sample of those that were given, because of child mortality. There are historical and cliometric

methodological issues in determining the shape of life tables applicable to ancient history, as

Woods (2007) summarized. While there is no large amount of direct data that can be exploited,

certain extrapolations across time and cultures allow for the linking of life expectancy with

fairly stable life table shapes. In summary, one can estimate death rates of around 30% in the

first year, and around 50% cumulatively for the first 5 years3. Parkin (2013) finds numerous

references in classical literature to the dangers of early childhood, and also points out that early

infant mortality could reach up to 50% in high stress periods4. Such high rates of mortality

could naturally interact with name choices. There is no ancient testimony about the practice

of necronymy, and whether this practice was common or not would substantially affect the

distribution of observed names, since the choices of names that we observe on inscriptions about

adults would become randomized. However, according to Hardie (1923), necronymy was common

in certain conditions in Macedonia in the early 20th century, and she infers this was most likely

inherited from ancient times. In Bresson (1981), comparable observations were made, also

pointing towards a fairly systematic use of necronymy. As a result, it is reasonable to assume

that despite child mortality, the names of adolescents or adults that we are able to observe today

reflect the parents’ initial choices, and not a randomized selection.

The extensive analysis of contemporary names we have mentioned earlier may not be relevant

for ancient Greece. In addition to the use of a single anthroponym without a patronym in the

modern sense, the choice of a name was also strongly affected by tradition and perceived prestige.

For example, paponymy, the use of a grandparent’s name for a child, was frequent. Honor and

3See Woods (2007), p. 379-380.
4See Parkin (2013), p. 47-48.
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names are also closely related. By giving one’s name in ancient Greece, a person would identify

themselves, and providing this information was a meaningful act. The importance of a name

can be shown to be deeply anchored in Greek literature; one good example may be Odysseus’s

introduction to Alcinous in Odyssey, book IX:

“But now I will tell you my name, so that you too may know it, and then when this

pityless day is over I may be your host, although my home is far. I am Odysseus, son

of Laertes, known among all men for my cunning, and my fame reaches heaven5.”

The importance of the name transpires from these verses, but they depict an important encounter

between two kings. In contrast, when first meeting someone with whom one is not very well

acquainted, names may not be fully given. Odysseus’s most famous reply to the Cyclops’s

question, also in Odyssey, book IX, illustrates this rather well. Telling one’s name is an important

act, and preceeds any form of interaction, and one is supposed to do it in good faith (which is

not the case with the Cyclops):

“My name is Nobody; and my mother, my father and all my companions also call me

Nobody6”

While certain people may be known by others by reputation, it was not necessarily the case that

they knew who the person was. The famous example of Aristides the Just makes this clear: As

Plutarch reported7, he was once confronted in the street by an illiterate man, asking him to

write “Aristides” on an ostrakon8 (Aristides obliged). Whether the story is true is not critically

important, but it appears clearly that it was conceivable that a man could know of a name,

without being able to recognize the person.

We can consider that the name of a person in classical Greece was used as an important piece

of information in dealing with them. As the first step in a relationship, the exchange of names

should indeed communicate a certain reputation in some cases, or a degree of prestige, and

potentially some clues about the person’s origin or family. Cuesta et al. (2015) have shown

with behavioral experiments on series of repeated games that reputation acquired in practice

played a significant role in human cooperation. When no particular history of interactions is

5Od., book IX[16–20] νῦν δ᾿ ὄνομα πρῶτον μυθήσομαι, ὄφρα καὶ ὑμεῖς / εἴδετ᾿, ἐγὼ δ᾿ ἂν ἔπειτα φυγὼν ὕπο νηλεὲς
ἦμαρ / ὑμῖν ξεῖνος ἔω καὶ ἀπόπροθι δώματα ναίων. / εἴμ᾿ ᾿Οδυσεὺς Λαερτιάδης, ὃς πᾶσι δόλοισιν / ἀνθρώποισι μέλω,

καί μευ κλέος οὐρανὸν ἵκει.

6Od., book IX[366–7] Οὖτις ἐμοί γ᾿ ὄνομα: Οὖτιν δέ με κικλήσκουσι / μήτηρ ἠδὲ πατὴρ ἠδ᾿ ἄλλοι πάντες ἑταῖροι.
7Plutarch, Vitae Parallelae Aristides, VII.
8A pottery fragment used in an ostracism vote, in order to ban a person from Athens.
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available, the name may serve as a proxy. The prestige and the reputation are then attached to

the names, not to the persons themselves, and reflect the behavior of those who share that name.

This prestige and perceived honor are hence a function of how the holders of the name behave

with others, whether they act fairly or not in general. Therefore, if we can account for the use

of names in interactions, then we may account for the ones that are the most beneficial or the

most honorable, and, as a consequence, for the ones that would preferably given to children as a

function of the existing name distribution. Giving the name of someone one wants to honor to a

child could also be accounted for if more people bearing the name in question within the family

increases some measure of honorability for that name.

In order to build a model appropriate to the context of ancient Greece, we combine features of

several of the economic approaches we have mentioned earlier. We consider groups of people,

which we call families, in the sense of clans or clienteles, rather than a small-size household. In

our logic there should be a reasonably limited number of such families in a polis. Along with Carr

and Landa (1983), we can assume that members of a same family need to behave well with each

other, as they would be identified and punished otherwise, while when dealing with people who

are not family members there would be more leeway for cheating. The interactions in which one

might exchange names are those defined as personalistic exchanges by Carr and Landa (1983).

Although we do not need to specifically define identity (as a function of the name or of the

family), some of the results from Akerlof and Kranton (2000) may be derived at equilibrium due

to optimal behavior of the whole population: people may behave in a certain way with those

with whom they share the same name, which is an identity-charged feature. Finally, the notion

of conformity as defined and exploited in Bernheim (1994) does not either required to be formally

expressed in our approach, but we will see that a conformist behavior for name giving rises up in

certain conditions.

2 Modeling the Use of Names

We assume there is a continuous population of individuals x ∈ P, and to each individual is

associated a single family ϕx ∈ F , a finite set of cardinal I. We will consider a probability

measure µ over P that gives the relative frequency of families. We will write Φf for the set of

individuals with family f , so that µ(Φf ) is properly defined. We further assume that for any

element x ∈ P, µ({x}) = 0.

In our modeling, we will use independent random variables X and Y following a uniform
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distribution on P , and define a probability P, so that for all µ-measurable set A ⊂ P , P[X ∈ A] =

µ(A). One simple way of representing the families is with a series of positive values (pfi
)1≤i≤I

such that ∑i pfi
= 1 and for each element fi ∈ F , µ (Φfi

) = pfi
.

All the people interact in pairs in the course of their life, and when they do, they can choose

to act fairly, or to cheat. Incentives are in place to try and deter people from acting unfairly

within the family: when they do, they receive a punishment (some reduction in utility, or some

reparation that needs to be paid). When someone acts unfairly with respect to a member of

their own family, they will be found individually. When people act unfairly with others outside

of the family, they cannot be easily found and as a result no cost is directly assessed. Although

there may be laws that punish crimes in general, the cheating we are describing here should not

be a serious offence. As such, we consider that in practice some laws or rules that address the

cheating could be enforced within a family, and much less so outside of a family.

When an individual x ∈ P interacts with y ∈ P and neither cheats, both gain g. If x cheats and

y does not, then x gains g + r, but there is a cost: if x happens to be from the same family as y,

ie ϕx = ϕy then the cost is cw. When both players cheat at the same time they have no gain

and no loss. When a player does not cheat, but is cheated, there is a loss of r. We assume that

cw > r, so that the punishment always takes away at least as much as the ill-gotten gains. One

could think of the punishment as a multiple of the potential gain, because such cheating reflects

badly on the entire family. This setting is very simple, but refinements such as different costs

schedules attached to participating, or when cheating outside of the family, do not change the

overall shape of the results while at the same time obscuring the logic.

We will write the expectation operator E with respect to P, and use µ to denote the relative

size of population groups. In particular, note that P[ϕX = ϕY ] = E [µ (ΦϕX
)]. If we write the

event Hx,y ∈ {0, 1} when player x cheats on player y, then the gain for x in an interaction with

y writes:

Gx,y = g Hx,y Hy,x +
(
g + r − cwIϕx=ϕy

)
Hx,yHy,x − r Hx,y Hy,x.

The choice that an individual x can make is to cheat or not, which we will write Hx, conditioning

on the information they may have (on their own family and name, or on the other’s family

and name). The core setting of this problem is comparable to a prisonner’s dilemma, where

cheating corresponds to defecting, and not cheating to cooperation. Considering mixed strategies,

the optimal probability that individual x cheats with individual y will be written ηx,y, and the

expected gain for individual x will be denoted by πx. Both measures depend on the information
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available to each individual. We will write Fx the information set that individual x can condition

upon, with random variables X and Y representing the randomly selected individuals in an

encounter.

From a general perspective, we can write the expected gain for player x conditioned by the fact

that x is cheating or not, and conditioned by x’s available information:

πx(H) = E [GX,Y | {HX,Y = 1} ∩ Fx]

πx

(
H
)

= E [GX,Y | {HX,Y = 0} ∩ Fx] .

At the optimum, when all participants play the mixed strategy, we will have for all x ∈ P:

E [GX,Y | {HX,Y = 1} ∩ Fx] = E [GX,Y | {HX,Y = 0} ∩ Fx] .

As the most realistic setting, in line with what we can understand of relationships in ancient

Greece, we will eventually assume that when people meet, they disclose their names but they do

not disclose what family they belong to, because either they do not wish to, or they may not

be able to prove what they would state. We consider that the name itself is necessarily given

truthfully, the potential decision to cheat coming only after one knows the other’s name. As a

result, there is no perfect knowledge of a counterpart’s family. Information on the distribution of

names in families and on their sizes is known to everyone, on the other hand.

We begin by characterizing several possible equilibria, depending on the information available

to the population: successively perfect information, no information (not even on one’s family),

knowledge of one’s family, and finally knowledge of one’s family and of the other’s name, which

is the most representative case. Considering these various possible conditions will allow us to

also consider the aggregate social optimum reached in each case.

2.1 Equilibria with Perfect Information

In the simplest case with full information, which we will denote with the superscript a, Fx =

Fy = {ϕX = ϕx, ϕY = ϕy}. We have the following result.

Proposition 2.1 (Interactions with Perfect Information). When individual x encounters indi-

vidual y with perfect information, the probability that x cheats is 1 if x and y are from a different
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family, and 1 − r
cw

otherwise. The aggregate probability of cheating is

E[ηa
X,Y (ϕX , ϕY )] = 1 − r

cw

∑
1≤i≤I

p2
fi

,

and the aggregate gain is:

E[πa
X(ϕX , ϕY )] = r

cw
(g + r − cw)

∑
1≤i≤I

p2
fi

.

Proof. The optimal probability of cheating depends on the information known by both, so we

simply write:

ηa
x,y(ϕx, ϕy) = Iϕx=ϕy ηa

x,y(ϕx, ϕy)|ϕx=ϕy + Iϕx ̸=ϕy ηa
x,y(ϕx, ϕy)|ϕx ̸=ϕy .

The following normal form representation shows the game when the two participants are from

different families. One can see that in this case, there is a pure strategy Nash equilibrium, when

both cheat, that is ηa
x,y(ϕx, ϕy)|ϕx ̸=ϕy = 1, and the expected gain is null, πa

x(ϕx, ϕy)|ϕx ̸=ϕy = 0.

Player y, ϕx ̸= ϕy

H H

Player x
H (0, 0) (g + r, −r)

H (−r, g + r) (g, g)

When people are from the same family, then the interaction can be represented as follows, and

there are then two possible Nash equilibria in pure strategies: both cheat, or both cooperate.

Player y, ϕx = ϕy

H H

Player x
H (0, 0) (g + r − cw, −r)

H (−r, g + r − cw) (g, g)

Solving for the mixed strategy optimum in this case, we obtain:

ηa
x,y(ϕx, ϕy)|ϕx=ϕy = cw − r

cw
= 1 − r

cw
,

which is between 0 and 1 with our assumptions.
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With this mixed strategy, the expected gain for any player x writes:

πa
x(ϕx, ϕy)|ϕx=ϕy = r

cw
(g − cw + r),

which is positive if g > cw − r.

In these conditions, the overall expected gain from these interactions can be written:

E[πa
X(ϕX , ϕY )] = r

cw
(g + r − cw)E [µ (ΦϕX

)] .

The aggregate probability of cheating is

E[ηa
X,Y (ϕX , ϕY )] = cw − r

cw
E [µ (ΦϕX

)] + (1 − E [µ (ΦϕX
)])

= 1 − E [µ (ΦϕX
)] r

cw

= 1 − r

cw

∑
1≤i≤I

p2
fi

,

where we use the fact that: E [µ (ΦϕX
)] = ∑

1≤i≤I p2
fi

.

When people from different families meet, the interaction is a straight prisonner’s dilemma: the

gain from defecting (cheating) is strictly superior to the gain when cooperating. When people

from the same family interact, since cw > r, this is not a typical prisonner’s dilemma according

to that definition, the gain from cheating is less than the gain attached to cooperation. Relying

on a large set of empirical studies on prisonner’s dillemas, Mengel (2018) and Gaechter, Lee, and

Sefton (2020) have shown that on non-repeated games, cooperation probability is still potentially

high, typically in the 20%-60% range, in spite of the optimality of defection. It is however largely

driven by the degree of temptation (defined in these papers) which in our case is equal to r
g .

Assuming that r may be as large as g, this temptation would drive the likelihood of cooperation

to very low levels, which would in turn justify the punishment cw, so that at least in some cases

there is high likelihood of cooperation.

With the cost cw, in the case of interactions within the same family, we can see that as the

punishment cost increases, the probability of cheating increases. This may seem paradoxical, but

if there is a very large cost of cheating then the more likely choice is for everyone to cheat so

that the probability of anyone cheating while the other is not cheating becomes very small. If

the punishment cost can be optimally chosen, it should be only slightly larger than the extra

gain obtained when cheating a non-cheating counterparty. Systematically cheating is a way of
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ensuring nobody gets caught and punished.

The aggregate outcome from these games with full information does not perform well socially,

and, as we will see, can be improved when information on one’s family is kept private.

2.2 Equilibria with No Information

At the other extreme, if individuals do not know, or do not factor in as part of their choices,

either their own family nor their counterpart’s family, the information set verifies Fx = ∅. We

will denote this situation with the superscript ∅. The optimal strategy for x, η∅
x , does not

depend on any input and is in fact constant as a function of x.

Proposition 2.2 (Interactions with No Information). When individual x encounters individual

y with no information, the probability that x cheats is constant and equal to:

η∅
x = 1 − r

cw

(
r

cw
∨
∑

1≤i≤I p2
fi

) .

The expected aggregate gain is:

π∅
x = g − (g + r)

1 − r

cw

(
r

cw
∨
∑

1≤i≤I p2
fi

)
 .

Proof. In the expression for player x’s expected gain depending on their strategy, the only

conditioning is that by HX,Y = 1 and hence:

π∅
x (H) = E

[
(1 − η∅

Y )(g + r − cwIϕY =ϕX
)
]
,

and

π∅
x

(
H
)

= E
[
−rη∅

Y + g(1 − η∅
Y )
]
.

Expressing the expected payoffs of this game in normal form, we can see that when cwE [µ (ΦϕY
)] >

r, the dominant strategy is for all players to cooperate.

Player y

H H

Player x
H (0, 0) (g + r − cwE [µ (ΦϕY

)] , −r)

H (−r, g + r − cwE [µ (ΦϕY
)]) (g, g)
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Equating π∅
x (H) and π∅

x

(
H
)

in the cases where there is no dominant strategy, and solving for

η∅
Y (which does not depend on Y ), we obtain:

η∅
x = 1 − r

cw

(
r

cw
∨ E [µ (ΦϕY

)]
) .

Since E [µ (ΦϕY
)] = ∑

1≤i≤I p2
fi

, we can also write:

η∅
x = 1 − r

cw

(
r

cw
∨
∑

1≤i≤I p2
fi

) .

The expected profit writes

π∅
x = −rη∅

Y + g(1 − η∅
Y )

= g − (g + r)

1 − r

cw

(
r

cw
∨
∑

1≤i≤I p2
fi

)
 .

We can see how the aggregate probability of cheating enters the expression for the expected

aggregate gain.

If cw < r
E[µ(ΦϕY )] , then the probability of encountering someone from the same family is low

enough that the potentially large cost of cheating a non-cheating counterparty is reduced and

does not require to be eliminated by everyone choosing to cheat at the same time, and the

optimal strategy is for all to cooperate. If cw > rI, it implies the probability of cheating is

strictly positive.

It is easy to see that πa
x(ϕx, ϕy) ≤ π∅

x , since ∑1≤i≤I p2
fi

≤ 1, and this situation with no information

is more socially beneficial than when people have full knowledge.

2.3 Equilibria with Private Information

We now consider the case when in these interactions each person knows their own family, but not

the other’s. The information set for x is therefore Fx = {ϕX = ϕx}, and we will denote this case

with the superscript o. We will look for a mixed strategy optimum, expressed as a probability

ηo
x(ϕx) of cheating, as a function of the participant x’s own family ϕx. The dependency of ηo

x(ϕx)

to x is only through ϕx. Note that in this case, the distributions from which X and Y are drawn

are the same.

Proposition 2.3 (Interactions with Private Information). When individual x encounters indi-

vidual y with private information, the probability that x cheats as function of their information

13



set is:

ηo
x(ϕx) = 1 − r

cw

(
r

cw
∨ µ (Φϕx)

) .

The aggregate probability of cheating across all possible interactions is:

E[ηo
Y (ϕY )] = 1 − r

cw

∑
1≤i≤I

pfi

r
cw

∨ pfi

,

and the aggregate gain is:

E [πo
X (ϕX , ϕY )] = g − (r + g)

1 − r

cw

∑
1≤i≤I

pfi

r
cw

∨ pfi

 .

Proof. The expected gain when cheating, and when the other participant y plays the optimal

strategy ηo
y(ϕy) can be written:

πo
x(H) = E [(1 − ηo

Y (ϕY ))(g + r − cwIϕY =ϕX
) | ϕX = ϕx] ,

and the expected gain when not cheating is

πo
x

(
H
)

= E [−rηo
Y (ϕY ) + g(1 − ηo

Y (ϕY )) | ϕX = ϕx]

= E [−rηo
Y (ϕY ) + g(1 − ηo

Y (ϕY ))] .

At the optimum, both strategies must have the same expected return for x, so that πo
x

(
H
)

=

πo
x(H). Noting that

E [ηo
Y (ϕY )IϕY =ϕx ] = ηo

x(ϕx)µ (Φϕx) ,

we obtain the equation:

r = cwµ (Φϕx) (1 − ηo
x(ϕx)),

and therefore

ηo
x(ϕx) = 1 − r

cw

(
r

cw
∨ µ (Φϕx)

) .

If there are very few people in x’s family, then there is a low probability of encountering people

from the same family and needing to systematically cheat in order to optimally avoid the large

punishment, and it is optimal to cooperate. Reciprocally, the more people there are in the family,

the greater the cheating probability.
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We can compute the average optimal probability E[ηϕY
] by integrating:

E[ηo
Y (ϕY )] = 1 − E

 r

cw

(
r

cw
∨ µ (ΦϕY

)
)


= 1 − r

cw

∑
1≤i≤I

pfi

r
cw

∨ pfi

.

We can compute the expected gain across individuals:

E [πo
X (ϕX , ϕY )] = E[−rηo

Y (ϕY ) + g(1 − ηo
Y (ϕY ))]

= g − (r + g)

1 − r

cw

∑
1≤i≤I

pfi

r
cw

∨ pfi

 .

Here again, we can directly see how the expected probability of cheating enters the aggregate

gain expression.

We can recognize a form similar to the one for the gain when all information is known and the

players are from the same family.

The difference between the expected probability of cheating with private information and with

no information at all writes:

E[ηo
Y (ϕY )] − E[η∅

Y (ϕY )] = r

cw

(
r

cw
∨
∑

1≤i≤I p2
fi

) − r

cw

∑
1≤i≤I

pfi

r
cw

∨ pfi

.

If the family size is regularly spread out and pfi
= 1

I , then

E[ηo
Y (ϕY )] = E[η∅

Y (ϕY )] = 1 − r

cw

(
I ∨ cw

r

)
.

Figure 1 shows the difference in the cheating probabilities between the private information

case and the case with no information at all across a large range of simulated population

distributions. The figure illustrates the fact that there is no systematic relationship between

the two probabilities. When the threshold r
cw

is high, the cheating probability with private

information appears generally higher.

However, if r
cw

is small and r
cw

< 1
I , then r

cw

(
r

cw
∨
∑

1≤i≤I
p2

fi

) = r
cw

∑
1≤i≤I

p2
fi

. In addition, if

for all f , pf ≥ r
cw

, then ∑
1≤i≤I

pfi
r

cw
∨pfi

= I and E[ηo
Y (ϕY )] = 1 − r

cw
I. In these conditions,

if pf ̸= 1
I , then r

cw

∑
1≤i≤I

p2
fi

< I r
cw

, and E[ηo
Y (ϕY )] < E[η∅

Y (ϕY )]. When the punishment for

cheating is costly relative to its potential gains, then having access to private information reduces
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Figure 1: Difference in Cheating Probability with Private Information and with No Information
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Note: The count of each family is drawn randomly from a lognormal distribution with dispersion parameter σ. The numbers
shown in the chart are the expected values across a large number of simulations. The threshold is r

cw
and I = 10.

the probability of cheating. In effect, if the distribution of people across families is spread out

enough relative to r
cw

, then having private information is not detrimental to the social good.

2.4 Equilibria With Partially Common Information

We now address a generalization of the equilibrium with private information, considering that

the distributions from which the participants are drawn are not the same. We assume that for

each x ∈ P, there exists µx, a measure giving the relative weight of the population sharing the

same characteristics as x, and associated probability Px such that for all measurable A ⊂ P,

Px[X ∈ A] = µx(A). All the µx represent the distribution of the population conditioned by some

characteristic specific to x, for example x’s name. Naturally, we may have µx = µz for some x

and z in P, for example two individuals with the same name.

We consider the case of interactions when individuals x and y know their own family, but not the

other person’s, and the measures µx and µy are known by both. This situation is denoted with

the superscript n. The optimal cheating probability can be written ηn
x (ϕx, µy), and it depends on

the knowledge of x’s family ϕx and on the distributional information on y’s characteristics. In

this context, µx and µy are given, just as µ was a given in the prior cases. The expression µy (Φϕx)

captures the probability that x would be in the same family as y knowing x’s characteristics,
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based on the knowledge of y’s family.

If the µx represent names, then these µx can be represented by the mass of individuals with a

given name in a given family. Set νx ∈ N , with N finite, the name of individual x. We also define

pn = µ ({x ∈ P : νx = n}) = ∑
f∈F pνx,f and as before, pf = µ ({x ∈ P : ϕx = f}) = µ (Φf ).

Then µx (Φf ) = pνx,f

pνx
. All the pn,f can naturally be expressed as a function of the population ρ

in a given family with a given name: pn,f = ρn,f∑
m∈N ,g∈F ρm,g

.

Proposition 2.4 (Interactions with Partially Common Information). When individual x en-

counters individual y with partially common information, the probability that x cheats as function

of their information set (which contains their own family and distributional information on y) is:

ηn
x(ϕx, µy) = 1 − r

cw

(
r

cw
∨ µy (Φϕx)

) = 1 −
(

1 ∧ r

cw

1
µy (Φϕx)

)
.

In aggregate, the cheating probability across all possible encounters is:

E[ηn
X(ϕX , µY )] = 1 − r

cw

∑
n∈N

pn

∑
f∈F

pf
r

cw
∨ pn,f

pn

.

Proof. The expressions for x’s expected gain writes as follows:

πn
x(H) = Ey [(1 − ηn

Y (ϕY , µx))(g + r − cwIϕY =ϕx)]

πn
x

(
H
)

= Ey [−rηn
Y (ϕY , µx) + g(1 − ηn

Y (ϕY , µx))] .

Swapping x and y, and equating the expected returns πn
x(H) and πn

x

(
H
)
, we get:

ηn
x(ϕx, µy) = 1 − r

cw

(
r

cw
∨ µy (Φϕx)

) .

The probability that x cheats y is therefore increasing as a function of the chances that y would

be in the same family as x conditioned on x’s name; this is a comparable effect to what we

observed earlier in the probability of cheating.

The expected gain for x hence writes:

E[πn
x ] = g − (g + r)

(
1 − r

cw
E
[

1
r

cw
∨ µY (Φϕx)

])
.

The probability of cheating can be integrated relative to Px and Py to get the aggregate probability
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of cheating.

E[ηn
X(ϕX , µY )] = 1 − E

 r

cw

(
r

cw
∨ µY (ΦϕX

)
)
 .

We can write for any measurable function h:

E [h (µY (ΦϕX
))] =

∫
h (µy (Φf ))P[Y ∈ dy]P[f ∈ df ]

=
∑
f∈F

pf

∑
n∈N

pnh

(
pn,f

pn

)
.

Hence we have:

E

 r

cw

(
r

cw
∨ µY (ΦϕX

)
)
 = r

cw

∑
n∈N

pn

∑
f∈F

pf
r

cw
∨ pn,f

pn

,

and

E[ηn
X(ϕX , µY )] = 1 − r

cw

∑
n∈N

pn

∑
f∈F

pf
r

cw
∨ pn,f

pn

where we can recognize a form similar to that of E[ηo
Y (ϕY )].

Figure 2 shows the difference in the cheating probabilities between the partially private information

case and the case with no information, and Figure 3 shows the difference with the private

information case. While there appear to be some patterns, there is no systematic relationships

between these quantities and no systematically better system. When the threshold r
cw

is low

(high cost of being caught), it appears based on Figure 2 that the cheating probability with

partially common information is lower than with no information. There is a similar effect at play

in Figure 3.

The expression for E[ηn
X(ϕX)] shows that if and only if, for all f and n, pn,f

pn
> r

cw
, then

E[ηn
X(ϕX)] = 1 − r

cw
I. We know that if and only if for all f , pf > r

cw
, then E[ηo

X(ϕX)] = 1 − r
cw

I.

The first condition implies the second one, and as a result, if the second condition is verified,

E[ηo
X(ϕX)] ≤ E[ηn

X(ϕX)].

We can see that if the distribution of names is well spread out across families, then this knowledge

does not condition much, and as a result the aggregate gain is comparable to the one with only

private information or the one with no information at all. In particular, if the punishment cw is

severe enough, then the conditional probabilities are likely greater than r
cw

and the aggregate

social gain is the same as if there was no information. The use of names as important information,

consistent with the way we represent interactions in ancient Greece, does not lead to a lower social

optimum in this case than in the no information case. The exchange of names can hence fulfill a

18



Figure 2: Difference between the Cheating Probability with Partially Common Information and
with No Information
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Figure 3: Difference between the Cheating Probability with Partially Common Information and
with Private Information
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social role, by allowing people to give each other something before entering in a more demanding

relationship, which would not be necessary in the three alternate information frameworks we

discussed earlier, without a significant social cost relative to these alternatives.

We can see that the names which would appear as the most attractive according to this logic are

the ones that are most common outside of the family: one wants to maximize ρaj

ρaj ,f
.

3 The Dynamics of Naming Choices

We have concentrated on understanding a possible function of names, and on some reasons why

names could be used in interpersonal exchanges. These names, being given to the children by the

parents, had to be determined in some way, and we now examine the way in which they could

be chosen within the framework of our simple model. We will consider several drivers of name

choices, the strategic one based on the probability of cheating being just one of them.

In light of the historical context we mentioned earlier, we consider that the choice of the names

observed in a Greek polis may come from three distinct sources: a strategic choice, traditional

paponymy, or the random appearance of new names. We will consider that the stock of each

name grows through time as a function of these three sources. Since the choice of names is

applicable to newborns, it affects a fraction of the population being born over each instant dt.

We consider that children belong to a unique family, which could be that of the mother or the

father. Individuals will pick the name with the greatest attractiveness, or of a parent, or from

some external source at any point, without having to factor in the behavior of the others, since

the change in population is assumed to be very small relative to the total population size.

In order to represent paponymy within the framework of our model, we will transform it into

a simple patronymy, so that to a certain extent, names simply grow in the population at a

rate proportional to their current stock. In a continuous time setting, the alternating jump

over a generation should not matter. In addition, as we will see, the data does not allow

for a detailed prosopographic perspective (tracking each life history), but only an onomastic

perspective (tracking the names).

3.1 Representing Strategic Name Choices

In the interactions between people according to the model we have developped so far, we have

seen that the individual’s characteristics affect both the expected gain, which depends on the

probability of one being cheated, and the probability of one cheating on others. The greatest

20



the probability that others cheat, the smallest the gain. Hence, the individuals for whom

the characteristics µx are such that the expected gain is highest are better off. Varying the

characteristics of x and y, the probability that x cheats writes ηn
x(ϕx, µy), and depends on x’s

family and on y’s name, written as a function of the population distribution ρ:

ηn
x (ϕx, µy) = 1 − 1 ∧ r

cw

ρνy

ρνy ,ϕx

.

We can consider the desirability of a name to be related to the probability of not cheating, that

is the probability that others do not cheat on a given person. The lowest the probability, the

higher the expected outcome, and the better off the person. Also, from an honor standpoint, it

should presumably be perceived as more honorable to not be cheated. We can note nevertheless

that when cw is near r, then the choice does not have much of an impact, because the cheating

probability is low anyway. If cw is large, on the other hand, then picking one name or the other

could have a significant impact on the amount of cheating the individual does or suffers. The

attractivity of a name a may be defined as the probability that people in general do not cheat on

a, taking values in [ r
cw

, 1]:

A(a, ρ) =
∑

f

ρf

ρ

(
1 ∧ r

cw

ρa

ρa,f

)
.

The optimal name choice depends on the manner in which all names and families are distributed.

In studying the dynamics of name distributions, fully reflecting this complexity makes it impossible

to obtain clear results. In order to illustrate some aspects of the optimal name choice, Figure 4

shows the average rank (in terms of popularity) of the name that gets picked across a large range

of simulated population layouts, following the same logic as in the prior figures. We can see that

there are some substantial variations in the nature of the names being picked, depending on each

specific situation.

Proposition 3.1 (Optimal Name Choice Logic). If names are distributed in the same manner in

each family, then the attractivity is constant. If names are concentrated in equally sized families,

then:

• If the most common name is not very frequent, then it is optimal to chose the least common

name;

• If the most common name is frequent, then it is optimal to chose the most common name.

Proof. We will first consider the case when names are distributed in the same way across
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Figure 4: Rank by Number of Carriers of the Optimal Name that Minimizes the Probability of
Being Cheated

0.1

0.2

0.3

0 1 2 3

Sigma

T
h
re
sh
o
ld

level

(4.0, 4.5]

(4.5, 5.0]

(5.0, 5.5]

(5.5, 6.0]

(6.0, 6.5]

(6.5, 7.0]

(7.0, 7.5]

(7.5, 8.0]

(8.0, 8.5]

(8.5, 9.0]

(9.0, 9.5]

(9.5, 10.0]

Note: The count of each name in each family is drawn randomly from a lognormal distribution with dispersion parameter σ.
The numbers shown in the chart are the expected values across a large number of simulations. The threshold is r

cw
,

|N | = 12 and I = 10.

families. We assume that for all name a, ρa,f

ρf
= ρa. Applying this simplification we get

A(a, ρ) = ∑
f pf

(
1 ∧ r

cwpf

)
, which does not depend on a.

If names are concentrated in families, this means we can write pa,f = pf If∈Fa , where Fa is defined

as the subset of families that carry name a. Also, for further simplification, we assume that the

families are sized equally, and pf = 1
I . Hence, pa = |Fa|

I . We can write:

A(a, ρ) = 1
I

∑
f

(
1 ∧ r

cw

Ipa

If∈Fa

)

= 1
I

∑
f

(1 − If∈Fa) + 1
I

∑
f

If∈FaIIpa
r

cw
>1 + 1

I

∑
f

If∈Fa

r

cw
paIIIpa

r
cw

<1

= 1 + IIpa
r

cw
<1

(
p2

aI
r

cw
− pa

)
.

Hence, if pa > cw
2Ir , A is increasing as a function of pa, and decreasing otherwise. Therefore, if

the most frequent name’s frequency is high enough it is optimal to pick it. If it is under the

threshold, it is optimal to pick the least frequent name. If pa > cw
Ir however, then the attractivity

is maximal, and any name that satisfies this condition may be chosen.

The strategy of picking new names could hence appear as either leaning towards innovative
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fashion, by choosing an initially rare and new name that is picked by everybody, or towards a

conformist choice, of picking the most common existing names. At the limit in either case, the

informational content from communicating the name would become low.

In the simplified context of the Proposition 3.1, if it is optimal to pick the rarest name, then if

new names sometimes appear (being invented or through immigration), then these names would

naturally seem optimal, because they would be very rare at first. Also, as the rarest names

are picked, they become less rare until eventually they would catch up with other names. This

situation could lead to a uniform distribution of names, where names would then not convey

particular information. If on the contrary the most frequent name is picked, then it may become

the only existing name, in which case the informational content in the names would also vanish.

More generally, we can see that if the cost cw is not extreme and there are many families, then

the optimal choice would appear to oscillate between the most frequent names, or just any

name. Without being able to characterize the optimal choice more precisely, it is reasonnable to

approximate it by a random choice weighed by name frequency, as a mix between a selection of

the most common names and a totally random choice.

3.2 A Model for the Distribution of Names

In the ancient Greek population for a polis, we consider that the natural population net growth

rate is λ − µ, where λ is the birth or immigration rate, and µ is the death or emigration rate.

When people appear (whether they are born or immigrants), there are three possible manners in

which their name is determined:

• The name may be given as a strategic choice according to the model we developed earlier,

in which case it will be selected using a particular logic. The rate at which this may happen

per unit of time, as a function of the number of people, is γ;

• The name may be a new name that did not exist before. This could reflect the effect of

immigration, or simply some creativity in naming. The rate at which new names may be

acquired per unit of time, as a function of the number of people, is β;

• Otherwise, the name is given using paponymy, or in our context patronymy, at the rate of

λ − β − γ. We assume that λ > β + γ so that only newly born people get a non-patronimic

name.

With this approach, we follow certain aspects of the model from Baek, Kiet, and Kim (2007),

however in their model they considered that names were changed after people were born, and
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did not have strategic name choices. We keep our notations ρ for the count of people in the

population, and N as the total number of names, but now depending on time since we are in a

dynamic evolution context. The overall approach is also consistent with the model proposed by

Reed and Hughes (2003), who also relied on transition probabilities and on probability generating

functions.

Proposition 3.2 (Evolution of the Number of Names). The average number of names per people

verifies
N(t)
ρ(t) = β

λ − µ

e(λ−µ)t − 1
e(λ−µ)t

and converges to β
λ−µ as t goes to infinity.

Proof. The total population is not affected by how people are named, it only depends on the net

growth rate α, and

ρ(t) = ρ(0)e(λ−µ)t.

We define π(s) as the rate of names appearing at a point in time s, that is π(s) = βρ(s). Hence

the total number of names at time t verifies N(t) =
∫ t

0 π(s)ds. As a result, we have:

N(t)
ρ(t) =

∫ t
0 π(s)ds

ρ(0)e(λ−µ)t =
∫ t

0 βe(λ−µ)sds

ρ(0)e(λ−µ)t = β

λ − µ

e(λ−µ)t − 1
e(λ−µ)t .

Hence limt→∞
N(t)
ρ(t) = β

λ−µ .

We now define the conditional probability that there are k people carrying the name n at time t,

given there were j people carrying it at time s:

pn(j, k, s, t) = P [ρn(t) = k | ρn(s) = j] .

We can express the dynamics of the number of people carrying a given name over a short period

of time dt as follows. We know that the part of births named by paponymy λ − β − γ can

explain an increase in the population carrying the name. The rate β, which refers to new names

being created, can only take people away from existing names and does not add them to existing

ones. The rate γ, concerning strategic naming, takes people away from a given name, but also

redistributes them across all existing names. The overall dynamics for the population, in terms

of the number of names or number of people, need to be consistent with the way transitions in
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each cohort’s population are expressed9.

Within this framework, a cohort with k + 1 people could only transition to k if one of them died

or emigrated, at the rate µ. Therefore, we shoud assume that over a short time period dt:

P [ρn(t + dt) = k | ρn(t) = k + 1] = (k + 1)µdt.

A cohort with k − 1 people could transition to k if one person was born and named according

to paponymy, or one person was strategically named to the current cohort. The probability for

this last event may depend on the distribution of all other names, so for now we will write it as

γ(ρ, p, k − 1). Hence, we assume that:

P [ρn(t + dt) = k | ρn(t) = k − 1] = (k − 1)(λ − β − γ)dt + γ(ρ, p, k − 1)dt.

Finally, the probability that a cohort with k people would remain with the same number of

people is the probability that none of the possible changes we discussed above takes place. Hence,

we would expect that:

P [ρn(t + dt) = k | ρn(t) = k] = 1 − k (λ + µ − β − γ) dt − γ(ρ, p, k − 1)dt.

Reflecting the strategic name choice, event with the simplest assumption such as picking a

uniform distribution across names, makes the calculation of the limiting behavior impossible. In

the case where there is no strategic choice, that is γ = 0, we can however derive some results

following Baek, Kiet, and Kim (2007). Although even in this case our model setup is different

from theirs (people are named at birth, do not change name afterwards), we find the same limit

distribution.

Proposition 3.3 (Transition Probability Expression). For a small enough increment dt, the

transition probability pn verifies:

dpn(j, k, s, t)
dt

= −k (λ + µ − β) pn(j, k, s, t)

+ (k − 1) (λ − β) pn(j, k − 1, s, t)

+ (k + 1)µpn(j, k + 1, s, t).

9The introduction of a non proportional increase in new names in Baek, Kiet, and Kim (2007) does not appear
to be consistent with the transition dynamics they assume.
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Proof. Considering an arbitrarily small time increment dt > 0, we have:

pn(j, k, s, t + dt) = P [ρn(t + dt) = k | ρn(s) = j]

= E
[
Iρn(t+dt)=k | ρn(s) = j

]
= E

[
E
[
Iρn(t+dt)=k | ρn(t)

]
| ρn(s) = j

]
=
∑

l

P [ρn(t) = l | ρn(s) = j]P [ρn(t + dt) = k | ρn(t) = l ∩ ρn(s) = j] .

However, since dt is small, we will assume that ρn cannot change by more than 1, that is, for all

k and l:

I|k−l|>1P [ρn(t + dt) = k | ρn(t) = l ∩ ρn(s) = j] = 0.

Hence, we have

pn(j, k, s, t + dt) = pn(j, k, s, t)P [ρn(t + dt) = k | ρn(t) = k ∩ ρn(s) = j]

+ pn(j, k − 1, s, t)P [ρn(t + dt) = k | ρn(t) = k − 1 ∩ ρn(s) = j]

+ pn(j, k + 1, s, t)P [ρn(t + dt) = k | ρn(t) = k + 1 ∩ ρn(s) = j] .

The particular expressions for the law of ρn(t + dt) in our assumptions do not depend on ρn(s).

Replacing in the expression, we can write:

pn(j, k, s, t + dt) − pn(j, k, s, t) = −k (λ + µ − β) pn(j, k, s, t)dt

+ (k − 1) (λ − β) pn(j, k − 1, s, t)dt

+ (k + 1)µpn(j, k + 1, s, t)dt.

This gives us the statement in the proposition.

Focusing on the case when j = 1, that is when we are conditioning by the point when there was

only one person in the cohort, we want to calculate pn(1, k, s, t). In the case where γ = 0, this

probability does not explicitly depend on n, as it is the same expression for all names.

3.3 Name Distribution Limiting Behavior

We are now interested in the behavior of the name distribution as t becomes large. We write

Pn(t, k) the probability that there are k people with name n at time t, without any conditioning.

Also, we write An the time when a name n appeared. If we are not treating the names

differently (as is the case when γ = 0, we do not need to keep the subscripts. We have
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P[A ∈ ds|A ≤ t] = π(s)∫ t

0 π(s)ds
, since π tracks the rate of occurrence of new names. Therefore,

conditioning the transition probabilities by the time of apparition of the name, we can write

P (t, k) =
∫ t

0
p(s, t, k)P[A ∈ ds|A ≤ t] =

∫ t
0 p(s, t, k)π(s)ds∫ t

0 π(s)ds
.

We have the following result, which, being identical to that from Baek, Kiet, and Kim (2007)

shows that the differences in the model set up did not have an influence.

Proposition 3.4 (Limiting Distribution without Strategic Naming). If γ = 0, the limiting

distribution when t goes to infinity P∞ verifies P∞(k) ∼ k
2+ β

λ−β−µ .

Proof. Using the explicit form for π, we have:

P (t, k) = λ − µ

1 − e−(λ−µ)t

∫ t

0
e−(λ−µ)(t−s)p(s, t, k)ds.

The probability generating function Ψ for z ∈ [0, 1) as Ψ(t, z) = ∑
k≥0 zkp(k, s, t), where the

dependency on s is implicit.

Note that z ∂Ψ
∂z = ∑

k≥0 kzkp(k, s, t), ∂Ψ
∂z = ∑

k≥0(k + 1)zkp(k + 1, s, t) and z2 ∂Ψ
∂z = ∑

k≥0(k −

1)zkp(k − 1, s, t). Multiplying both sides of the equation in Proposition 3.3 by zk and summing,

we obtain after some simplifications, and writing ν = λ − β:

∂Ψ
∂t

=
(
νz2 − (ν + µ) z + µ

) ∂Ψ
∂z

.

This first-order PDE has the boundary condition that at time s ≤ t, there should be a single

person in the cohort, so that Ψ(s, z) = z since pn(1, 1, s, s) = 1. This equation is similar to the

one solved in Baek, Kiet, and Kim (2007), although the variables are not the same: what they

wrote as λ(z − 1)(z − µ+β
λ ) corresponds here to ν(z − 1)(z − µ

ν ), where we have defined ν as

ν = λ − β. Their solution for the equation is nevertheless valid and their approximation as well,

so that

lim
t→∞

P (t, k) ∼ k
−
(

1+ λ−µ
ν−µ

)
,

which gives the result.

This result implies that with a proportional growth, the name distribution converges towards a

power law of parameter 1 + β
λ−β−µ . Further, if we write the limit r = limt→∞

N(t)
ρ(t) = β

λ−µ , then

the power law to which the distribution converges is fully conditioned by r and has paramater
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1
1−r . In this model’s framework, when there is no strategic name choice, the distribution of

names is strictly related to the ratio of the number of names relative to the number of people in

the population.

The results derived so far do not account for any strategy in naming. As we mentioned earlier, a

term γ(ρ, p, k − 1) that could be introduced to represent the strategic choices would make the

model intractable, if it effectively depends on these parameters. However, we can account for

these strategic choices in a simpler manner. Indeed, based on Proposition 3.1, we argued that,

depending on conditions such as the punishment cost cw and the number of families I, strategic

naming could be captured through either a choice of the rarest name, or population-weighed

random choice of names. We will then define γ as the intensity of strategic choices: choices of

the least common name if γ > 0, and choice of the most common names (population-weighed) if

γ < 0. We then have the following:

Proposition 3.5 (Limiting Distribution with Strategic Naming). If γ ̸= 0, the limiting distri-

bution when t goes to infinity P∞ verifies P∞(k) ∼ k
2+ β+γ

λ−β−γ−µ . However, the ratio N(t)
ρ(t) still

converges to β
λ−µ .

Proof. The optimal strategy of chosing the least common name can in fact be simply represented:

at any point in time, given the expected continuous increase in the population across all names,

the least common name will be the latest invented name that has just been created. And if people

strategically name their babies accordingly, the population with that name will increase, making

the next new name the least common name. In a mean-field context, strategically choosing a

name according to our model simply adds to the rate of name invention: by adding more people

to the population carrying a name that was just invented, it makes the probability that this

population increases by a given amount more likely.

If γ < 0 and represents the choice of the most common names, then in a mean-field context it is

in fact not changing the distribution of the names with a positive population count, because the

names that are redistributed are done so according to each name’s share in the total population.

Hence, the parameter γ, whether positive or negative, which specifies the rate of strategic name

choices, simply behaves like β: either it adds to it, reflecting the choice of brand new names, or

it subtracts from it, reflecting the choice of existing names. The essential difference between the

two is that γ does not add or take away new names, and therefore does not increase or decrease

the name count: π(s) does not depend on γ. In the proof for Proposition 3.5, the expression for

P (t, k) does not depend on β through the explicit form of π(s), because it is cancelled out in the
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conditional probability P[A ∈ ds|A ≤ t]. As a result, replacing β with β′ = β + γ in Proposition

3.5 accounts for the impact of strategic name choices. Separately, β is not changed into β′ in the

expression of pi(s), and the limiting behavior of N(t)
ρ(t) is hence unchanged.

Thanks to this result, we can now see that there is an additional degree of freedom in the

relationship between the number of names per people, and the limiting behavior of the name

distribution. Recalling that r = limt→∞
N(t)
ρ(t) , the name distribution therefore follows a power

law of parameter
λ − µ

λ − µ − β − γ
= 1

1 − r − γ
λ−µ

,

where γ may be positive or negative depending on characteristics of the strategic name choice.

4 Data Analysis

In this section we examine the empirical evidence concerning names in Ancient Greece, and

confront it to the models we have discussed so far. We use the data from the LGPN10, which was

discussed in Gauthier (2021). However, since the LGPN covers more than a millenium with very

significant political and social evolutions, it seems relevant to restrict it to the older archaic and

classical periods, so we only retain observations anterior to 350 BC. Further, we know that the

LGPN tracked names of both men and women, the latest representing only a fraction. In order

to stay more strictly within the confines of our model, we only keep men names in our sample.

4.1 Number of Name Observations

As Baek, Kiet, and Kim (2007) reported, one typically observes a relationship between group

size and the number of names observed in the group. The relationship is logarithmic in some

cases (for contemporary China and Korea), or algebric with an exponent close to 1 (for many

other countries), where using our notations N = ρb with b ∈ [0, 1].

Figure 5 shows on a logarithmic scale the relationship between the number of names and the

number of people across poleis. We can see that it is quite strong. On the logarithmic scale,

the slope in the data is 0.97; on the linear scale it is 0.46. Our simple model was predicting a

simple linear relationship; the presence of this exponent slightly below 1 could be explained by a

reduction in the attractiveness on large places, so that the immigration or name innovation rate

tapers slightly off as population increases. In any case, the ratio on the linear scale tells us that

10See Parker, Yon, and Depauw (1996).
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Figure 5: Log/log Plot of the Number of Distinct Men Names as a Function of Total Number of
Mentions Across Poleis
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the immigration / name innovation rate amounts to roughly half of the population growth.

4.2 Empirical Name Distributions

Our formal model led us to expect a particular distribution shape, with particular parameters.

Figure 6 shows the log/log plot of name frequency distributions across a large set of poleis. These

distributions for the various places look quite similar, although they are somewhat shifted due

to the differences in total count. We can see that they appear to follow power laws, but have a

bend that could reflect an exponential distributino as well.

We can test for the various distributions that may explain these shapes. It is necessary to use a

maximum-likelihood approach, and not a simple regression in log/log space, as was shown by

Clauset, Shalizi, and Newman (2009). Table 1 shows the distribution fits for all the locations,

carried out using the implementation from Alstott, Bullmore, and Plenz (2014). In aggregate,

these distributions are power laws or truncated power laws. At the individual polis level, they

look more like truncated power laws or exponential distributions, but the dispersion of parameters

for the power law fits is much less dispersed than for these other types of distributions.

The power law coefficients, around 1.3, are quite different from what has been observed on

contemporary data. As Baek, Kiet, and Kim (2007) reported, for most large cities or countries in

the world, the coefficients for the name distribution power law tends to cluster around 2. Their
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Figure 6: Log/log Plot of Name Distributions Across Poleis for Men
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Note: The data includes all locations with more than 2000 observations.

Table 1: Summary Statistics on Distribution Fits Across Places and in Aggregate

Statistic Median St Dev Aggregate
Lambda Exp 1.959 0.669 0.444
Alpha Pow 1.263 0.124 0.832
Alpha Trunc 0.735 0.988 0.950
Lambda Trunc 0.801 0.725 0.017
Trunc vs Pow R 5.875 2.512 17.026
Trunc vs Pow p 0.000 0.000 0.000
Trunc vs Exp R 0.710 1.779 20.760
Trunc vs Exp p 0.141 0.274 0.000
Pow vs Exp R -4.958 3.074 17.546
Pow vs Exp p 0.000 0.187 0.000

Note: The distribution names in the tests are abbreviated as follows:
Exp = exponential, Pow = (pure) power, Trunc = power law with expo-
nential decay. R: ratio of goodness-of-fit; a positive number means that
the first law of the two is preferred. p: significance level; the probability
that the preference would be due to randomness. The same abbrevia-
tions are used in other comparable tables.

model accounted for this pattern, and for the relationship with the name ratio r = β
λ−µ . In a few

particular cases, such as Korea, the power law has a parameter of 1, and the number of names

grows logarithmically as a function of total population. One study, focused on rural Sicily, found
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coefficients that were closer to 1 and in some cases even under 1: Pavesi et al. (2003). Sicily’s

ancient name, Magna Graeca, reminds us that a share of its population came from Greece in

the archaic period, so it is interesting that this particular shape in name distribution, where the

parameter is close to 1, would be found there as well.

The models for the limiting behavior of name distributions developed by Baek, Kiet, and Kim

(2007), Maruvka, Shnerb, and Kessler (2010) or Reed and Hughes (2003) effectively enforce a

particular relationship between the name ratio and the power law parameter α, as we pointed out

earlier: α = 1
1+r . Figure 7 plots the relationship in the case of Greece, across poleis, in logarithmic

scale. We can see that it would not be possible to apply a relationship of the prescribed form.

Adding the degree of freedom afforded by the strategic selection of names, we can express the

relationship instead as α = 1
1+ γ

λ−µ
−r

where in this expression γ > 0 shows the intensity of name

choices of the conformist sort (picking the most common names).

Figure 7: Relationship Between Distribution and Number of Names
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We find that 1
α = 1.52 − 0.84 r, and the coefficient for r is fairly close to 1. In addition, we can

see that γ
λ−µ = -0.52, which would suggest a fairly strong rate of conservative naming choices.

5 Conclusion

We began our analysis by asking why one would have names in the context of ancient Greece,

and proposed a model inspired from identity and clan economics. We showed that the exchange
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of names could be understood as a way of improving social cooperation, in comparison with a full

information case in particular. Given this context, we argued that optimal name choices could

be reduced to some simple alternatives, for simplicity, and showed that adding the possibility for

strategic names lead to particular distributions at the limit. Then, we examined empirical data

from the archaic and classical periods, and showed that this model could well account for the

patterns we observed.
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