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Real options have been used to evaluate investment decisions with various structures, but have rarely been put into a game theoretical context. We examine the risk of war over a common resource, whose value is a geometric Brownian Motion, where one country may preemptively appropriate the resource, and the other wage war for it. We derive a closed form expression for the optimal mixed strategy that both countries should follow, and show that the resulting price level that triggers capturing the resource and subsequent war asymptotically follows a power law. The present value of the time until that trigger also decays slowly asymptotically. In consequence, in spite of both countries' propensity towards preemption, war may be indefinitely delayed.

Introduction

Trying to understand war and conflict from a rational perspective naturally raises all manners of paradoxes, one of the clearest being the famous adage "if you want peace, prepare for war".

The analysis of war in the mathematics of decision was initially tackled by [START_REF] Schelling | The Strategy of Conflict[END_REF] 1980) and [START_REF] Boulding | Conflict and Defense: A General Theory[END_REF], with game theory and in a fairly static setup. As [START_REF] Maoz | Paradoxes of War: On the Art of National Self-Entrapment[END_REF] and [START_REF] Wagner | The Theory of Games and the Problem of International Cooperation[END_REF] showed, this approach leads to many paradoxes when one considers pure, or deterministic, strategies. Resource wars, in the whole gamut of human or even non-human conflict, have a specific trait in that one may be better able to frame the utility derived from waging war. Resources have value that may be readily identified, unlike other causes for war, such as honor, which are more difficult to asses [START_REF] Hirshleifer | The Bioeconomic Causes of War[END_REF]. While economists have studied resource wars, such as [START_REF] Acemoglu | A Dynamic Theory of Resource Wars[END_REF], [START_REF] Caselli | The Geography of Interstate Resource Wars[END_REF], [START_REF] Martin | Make Trade Not War?[END_REF] for example, these approaches do not seek to account for the particular dynamics of resource values.

In this paper, we rely on a real options framework in order to examine the risk of conflict around a resource accessible by two countries. This approach is comparable with investment decision in a competitive environment, to some extent. Real options are indeed useful in evaluating investment or disinvestment opportunities, but reflecting strategic behavior in a competitive environment can be complex, and potentially requires making specific assumptions about differences in firms or actors capabilities. For example, one may account for the differences between firms in a duopolistic situation through investment delays [START_REF] Chesney | American Parisian Options[END_REF]). In the case of the exploitation of a common resource, some models focus on realistically capturing the specifics of the competitive situation (D'Alpaos, Moretto, & Rosato 2023). Real options have been used to also model the decision to invest in war preparation [START_REF] Medina | Pricing War Within a Real Option Framework[END_REF]. Nevertheless, in order to best account for the interactions of investment decisions in non-monopolistic cases, one needs to combine real options and games, an area in which there has been limited research [START_REF] Grenadier | Option Exercise Games: The Intersection of Real Options and Game Theory[END_REF][START_REF] Azevedo | Developing Real Option Game Models[END_REF][START_REF] Arasteh | Combination of Real Options and Game-Theoretic Approach in Investment Analysis[END_REF]. Further, these approaches mostly focus on pure strategies, especially for preemption.

In our approach, we will consider mixed (randomized) strategies, which can reach a broader optimum, while also offering an element of non-deterministic surprise, which is important in the context of war. This will require us to follow a probabilistic approach in studying the real options embedded in the model, because of the added complexity of optimal randomized strategies. This is distinct from usual approaches in real options where the optimal strategy is directly obtained at the optimum: we first express the present value of decision variables, and then optimize (Gauthier 2002a(Gauthier , 2002b)). The second section presents the model and real option framework. The third section embeds the real options in a strategic framework and shows that the optimal distribution of the threshold at which one country will open the hostilities by seizing a commonly accessible resource asymptotically follows a power law, and that the time to conflict decays slowly.

A Real Option Model for Resource Appropriation

Modeling Assumptions

We consider two countries, indexed by i ∈ {1, 2}, and we will write -i to designate "the other country" when we consider Country i . The market price of some resource is given by a stochastic process (S t ) t ≥0 , a geometric Brownian Motion solution of: d S t = µd t + σd B t . The stochastic process B is a standard Brownian Motion on a probability space (Ω, F , P). We will assume that the drift is not too strong, that is µ < σ 2 2 . Each country needs to use this resource and acquires it on the market. The quantity of the resource in question, that must be consumed at each point in time, is a fixed amount ψ i per unit of time. The total cost of using the resource at time t is therefore ψ i S t . Decisions are made using an actuarial logic, and both countries use the same discounting rate ρ > µ ∨ 0. Hence, for Country i , the expected cost of future resource procurement R i at time 0 can be written:

R i (S 0 ) = E S 0 - ∞ 0 e -ρs ψ i S s d s = -ψ i ∞ 0 e -ρs S t E e (µ-σ 2 2 )s+σB s d s = -ψ i S 0 ρ -µ .
Note that with our assumptions, ρµ is always positive. We will write α i = ψ i ρ-µ , the present value of an infinite stream of resource cost growing at a rate of µ, so that R i (S 0 ) = -α i S 0 . R i is a function of S 0 , and does not depend on time. For a cost C i , let us assume Country i can appropriate territory where the resource can be found, in which case these resources do not need to be acquired in the market. Then, after this territory is occupied, the procurement cost becomes 0.

The Real Option Framework

If Country i is the only one who could appropriate the resource, then this decision corresponds to a standard real option. Since the cost only depends on the resource price S t , the optimal decision threshold to appropriate the resource must be expressed as a hitting time of the form

T h = inf{u ≥ 0 : S u = h}, with h ≥ S 0 .
As a function of the threshold h, the total procurement cost, depending on the decision threshold h, can be written:

R i h (S 0 ) = E S 0 - T h 0 e -ρs ψ i S s d s -C i E S 0 e -ρT h
In order to compute E S 0 -T h 0 e -ρs ψ i S s d s , we simply write it as:

E S 0 - T h 0 e -ρs ψ i S s d s = E S 0 - ∞ 0 e -ρs ψ i S s d s -E S 0 - ∞ T h e -ρs ψ i S s d s = E S 0 - ∞ 0 e -ρs ψ i S s d s -E S 0 e -ρT h E S t - ∞ T h e -ρ(s-T h ) ψ i S s d s = R i (S 0 ) -E S 0 e -ρT h R i (h).
The last two equalities come from the fact that, due to the strong Markov property of the Brownian Motion applied at the stopping time T h , the process starting from T h has the same law as the process starting from h at any point in time. The Laplace transform of a geometric Brownian Motion hitting time is well known (Jeanblanc, Yor, & Chesney 2009, 152-153) and for h ≥ S 0 :

E S 0 e -ρT h = S 0 h 1 2 - µ σ 2 + 2ρ σ 2 + 1 2 - µ σ 2 2 .
We will write

β = 1 2 - µ σ 2 + 2ρ σ 2 + 1 2 - µ σ 2 2
. Since µ < σ 2 2 and ρ > µ, we have β > 1 too. Hence, we obtain the value of the potential appropriation strategy R i h (S 0 ):

R i h (S 0 ) = R i (S 0 ) -E S 0 e -ρT h R i (h) -C i E S 0 e -ρT h = -α i S 0 + S 0 h β (α i h -C i ) .
This value can be maximized as a function of h to find the optimal strategy. Solving for -1) . The threshold expresses a ratio between the entry cost and the future cost of having to buy the resource. Finally, we can express the value of following the optimal strategy:

∂R i h (S t ) ∂h = 0, we obtain: h * i = C i β α i (β
R i h * i (S 0 ) = C i β -1 S 0 α i (β -1) C i β β -α i S 0 ,
and we can see that

R i h * i (S 0 ) > R i (S 0 ).
3 The Option of War in a Strategic Setting

Impact of Conflict

In a strategic context, however, Country -i may have already taken possession of the resource, or may decide to attack Country i . We therefore need to make particular assumptions about the impact of the conflict situation on the costs. The cost C i we considered earlier is only applicable if the territory to be appropriated is not already occupied. If it is occupied, appropriating it requires waging war. We model war as a fixed cost that is applied instantaneously.

Costs are suffered by both the attacker and the defender: W i is the cost for Country i attacking Country -i , and D i is the cost for Country i defending against Country -i . After the attacker wages war, both countries will share the resource, with an allocation θ i for Country i and θ -i = 1 -θ i for Country -i . After this war, the country which held the full territory loses a share of its benefit in exploiting the resource, as a consequence.

Assume Country i holds the territory and exploits the resource at time 0. Country -i sets a threshold l -i such that when it is reached, they will wage war. In these conditions, the strategy's value to Country -i can be expressed in a similar way to what we have calculated earlier for R i h (S 0 ):

R -i l -i (S 0 ) = -α -i S 0 + S 0 l -i β (θ -i α -i l -i -W -i ) .
The future gains in exploiting the resource, for Country -i , are only a fraction θ -i of what they would be if they were the only actor.

From Country i 's perspective, who is exploiting the resource alone initially, the expected future costs of procuring the resource is 0 if Country -i does not wage war. If it does, then it becomes:

R i l -i (S 0 ) = - S 0 l -i β (θ i α i l -i + D i ) .
We can therefore write the value of the strategies (l i , l -i ) before any of the countries takes the resource, in all generality for Country i as:

R i l i ,l -i (S 0 ) =I l i <l -i -α i S 0 + S 0 l i β (α i l i -C i ) - S 0 l -i β ((1 -θ i )α i l -i + D i ) + I l i ≥l -i -α i S 0 + S 0 l i β (θ i α i l i -W i ) .
There is a discontinuity when l i and l -i are equal: the first to invest has a cost C + D while the other country has a cost W .

Given l -i , one can determine the optimal level for l i ≥ l -i in a deterministic fashion. Indeed, Country i , in this case can find its optimal attack threshold with the only condition that it be greater than l -i . Letting Country -i take over the resource first, results in a value, for Country i , of:

-α i S 0 + S 0 l i β (θ i α i l i -W i ) .
The optimal war threshold without any constraint is therefore β-1) . However, since we must have l i ≥ l -i , the optimal attack takes place when the underlying price reaches l -i ∨ T i . If W i is very low, and so is T i , for example, then Country i should attack immediately after Country -i has taken over the resource.

T i = W i β θ i α i (
In this conflict situation, however, we must determine how the decision to be the first to take over the resource can be made.

Game-theoretical Equilibrium

Each country needs to determine an optimal strategy to set the l thresholds. If one country uses a relatively low threshold and the other one a high threshold, the first one will attack and occupy, but war should only take place in the distant future. If the thresholds are low, we expect to observe war soon, with high costs attached. We can see there is a strategic aspect, and that there is a game at play, roughly comparable to a game of chicken: the lower the threshold, the least cooperative the behavior. In order to find an optimal strategy, we assume that potentially different thresholds are drawn from an optimal probability distribution at the Bayes-Nash equilibrium. At the optimum, if a player is drawing from the optimal distribution, then whatever pure strategy the other player follows, should result in the same value to them.

There is a timing effect in this situation, however: the first one to take possession of the territory gives the other country the ability to chose their optimal entry level unilaterally.

Therefore, both can attempt to preempt one another with a randomized strategy, but once the first one has taken the territory, the optimal threshold for the other one becomes deterministic.

We write L i and L -i the independent random variables corresponding to the optimal strategic choice for each country. From the standpoint of Country i , we write the value of these strategies R * ,i

L i ,L -i (S 0 ), depending on the relative values of L i and L -i , as R * ,i L i ,L -i ,≥ (S 0 ) or R * ,i L i ,L -i ,< (S 0 ). If L i ≥ L -i ,
then Country i can determine their optimal attack threshold with the only constraint that it be higher than L -i . Therefore, in this case:

R * ,i L i ,L -i ,≥ (S 0 ) = -α i S 0 + S 0 L -i ∨ T i β (θ i α i (L -i ∨ T i ) -W i ) .
If on the contrary L i < L -i , then i is the first to take over the territory once price L i is reached, but then Country -i determine their own optimal level, which is symmetrical to the prior case, and equal to: L i ∨ T -i . Therefore, in this case:

R * ,i L i ,L -i ,< (S 0 ) = -α i S 0 - S 0 L i β (θ i α i L i -C i ) - S 0 L i ∨ T -i β ((1 -θ i )α i (L i ∨ T -i ) + D i ) .
At the optimum in a Bayes-Nash equilibrium, the strategy followed by -i , in setting the distribution of L -i , should make Country i indifferent to any specific deterministic choice of L i . Therefore, there exists a constant c independent of u such that:

c = ∞ S 0 P[L -i ∈ d v]R * ,i u,v (S 0 ) = u S 0 P[L -i ∈ d v]R * ,i u,v,≥ (S 0 ) + ∞ u P[L -i ∈ d v]R * ,i u,v,< (S 0 ) = u S 0 P[L -i ∈ d v]R * ,i u,v,≥ (S 0 ) + P[L -i ≥ u]R * ,i u,v,< (S 0 ).
since R * ,i u,v,< (S 0 ) does not depend on v, and R * ,i u,v,≥ (S 0 ) does not depend on u. We write the density

P[L -i ∈ d v] = f L -i (v)d v,
which cannot depend on L i . Taking the derivative of the above equation with respect to u, we obtain after some simplifications:

0 = f L -i (u) R * ,i u,u,≥ (S 0 ) -R * ,i u,v,< (S 0 ) + ∂ ∂u R * ,i u,v,< (S 0 )P[L -i ≥ u]. We write F L -i (u) = P[L -i ≥ u], so that F ′ L -i = -f L -i .
The equation can be rewritten:

F ′ L -i (u) = F L -i (u) ∂ ∂u R * ,i u,v,< (S 0 ) R * ,i u,u,≥ (S 0 ) -R * ,i u,v,< (S 0 )
.

We have:

R * ,i u,u,≥ (S 0 ) = -α i S 0 + S 0 u ∨ T i β (θ i α i (u ∨ T i ) -W i ) and: R * ,i u,v,< (S 0 ) = -α i S 0 - S 0 u β (θ i α i u -C i ) - S 0 u ∨ T -i β ((1 -θ i )α i (u ∨ T -i ) + D i ) .
If we assume that S 0 = 1, without much loss in generality, we have:

R * ,i u,u,≥ -R * ,i u,v,< = u -β (θ i α i u -C i ) + (u ∨ T i ) -β (θ i α i (u ∨ T i ) -W i ) + (u ∨ T -i ) β ((1 -θ i )α i (u ∨ T -i ) + D i ) ∂ ∂u R * ,i u,v,< = -u -β θ i α i (β -1) - C i u + I u<T -i (1 -θ i )α i (β -1) -I u<T -i D i u .
If the characteristics of both countries are the same, so that T i = T -i , these expressions can be simplified to some extent, and we can express the solution to the differential equation in a concise manner. We obtain the solution:

P[L -i ≥ u] = exp - u 1 d x θ i α i (β -1) - C i x + I x<T i (1 -θ i )α i (β -1) -I x<T i D i x α i θ i x -C i + x β (x ∨ T i ) -β (α i (x ∨ T i ) + D i -W i ) .
For x large (and greater than T i in particular), the term under the integral in the exponential can be approximated by )x , as x goes to infinity. Hence, we can see that when u goes to infinity:

θ i (β-1) (θ i +1
P[L -i ≥ u] ∼ e - θ i (β-1) θ i +1 ln(u) = u - θ i (β-1) θ i +1 .
This is a fat-tailed distribution, and more specifically a power law. The probability that one would have to wait until an arbitrary large threshold u is reached before a first country occupies the territory, and the other country then wages war at a higher threshold depending on this one, is therefore:

P[L i ≥ u ∩ L -i ≥ u] ∼ u - 2θ i (β-1) θ i +1 .
The rate of decay of this probability is slow, so that there are chances that war may in fact take place in a distant future only. The Laplace transform of the war-trigger level L W = T i ∧ T -i (when a country first takes possession of the resource) hence verifies, for u large:

E e -ρT L W L W ≥ u ∼ u γ i ∞ u d vγ i v -β-γ i -1 = u -β β + γ i ,
where we write γ i = 2θ i (β-1)

θ i +1 .
Note that E e -ρT L W L W ≥ u ∼ 1 β+γ i E e -ρT u . When both countries act optimally in the sense of game theory, the time until conflict, asymptotically, behaves in a comparable fashion to a simple hitting time, and decays relatively slowly. Therefore, we can see that, due to the strategic nature of the game here, and in particular in spite of both countries' propensity towards preemption, war may be indefinitely delayed.