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Using a numerical model of the two-level surface quasi-geostrophic equations, we investigate the evolution
of two circular temperature patches, one located at each level. We vary the vortex intensities, radii, and
the vertical distance between the two levels. We also study different radial profiles of temperature for each
vortex. This paper considers two main situations: (initially columnar) vortices with like-signed buoyancies
which are linearly unstable and may break, and initially tilted vortices with opposite-signed buoyancies,
which may align vertically. Numerical experiments show that (1) identical contra-rotating vortices break
into hetons when initially perturbed by low azimuthal modes; (2) asymmetric vortices stabilise nonlinearly
more often and can form quasi-steady baroclinic tripoles; (3) co-rotating vortices can align when the two
fluid levels are close to each other vertically, and when the vortices are initially distant from one another by
less than three radii; (4) for initially more distant vortices, the two vortices rotate around the plane center;
(5) in all cases, the vortex contours are disturbed by Rossby waves. These results compare favorably to
earlier results with internal quasi-geostrophic models, but apply more easily to near surface dynamics in the
ocean. Further modelling efforts may extend the present study to fully three dimensional ocean dynamics.

Keywords: Two-level model, surface quasi-geostrophy, vortex stability, Burger number, modal analysis

1. Introduction

Vortices are long-lived oceanic flow structures, with a mostly horizontal circulation imposed by
the Earth’s rotation and the density stratification (Carton 2001). Vortices play a substantial
role in the transfer of water masses, heat and momentum across the oceans (Richardson
1983, McWilliams 1991, Provenzale 1999, Gula et al. 2019). They can last from a few weeks
to a few years and drift over distances as large as half an ocean basin (Carton 2010). The
robustness of oceanic vortices, also called ”eddies”, is related to their internal balance between
the pressure and velocity field, over large radii (several tens of kilometers) and thicknesses
(several hundreds of meters) van Heijst (2010). The radial pressure anomaly balancing the
circular motion is related to an internal density anomaly (Hopfinger and van Heijst 1993).
Indeed, oceanic vortices trap and carry heterogeneous water masses, characteristic of their
regions of formation, far away from these regions (Robinson 2012, Gula et al. 2022).

Insofar as the hydrostatic and geostrophic balances mostly hold inside these vortices, the
quasi-geostrophic (QG) model is an appropriate framework to describe their dynamics and
evolution (Reinaud et al. 2022). Nevertheless, due to the ocean’s density stratification, more
than one layer, or vertical level, is necessary in this model to adequately represent these
vortices (Reinaud 2019). The simplest model available to describe oceanic vortices is the two-
layer, quasi-geostrophic model (Flierl 1978). This model represents two slabs of homogeneous
water, with different densities, superimposed, and interacting via their density interface. In
each layer the velocity is mostly horizontal and geostrophic, and the dynamics is governed
by the evolution of layerwise potential vorticity with forcing and dissipation (Charney 1948).
This two-layer quasi-geostrophic model has been the framework of the study of baroclinic

∗Corresponding author:xcarton@univ-brest.fr



June 1, 2023 Geophysical and Astrophysical Fluid Dynamics output

2

instability of parallel flows by Phillips (Phillips 1954) and of baroclinic vortex instability
(Sokolovskiy and Verron 2013, Flierl 1988, Carton and McWilliams 1996, Carton et al. 2010).

In the presence of buoyancy anomalies concentrated vertically over a shallow depth, the
quasi-geostrophic model can be expressed via the evolution of buoyancy (or temperature)
anomalies, which are the singular equivalents of potential vorticity. This restriction of the
general QG model is the surface quasi-geostrophic model (SQG) which represents the advec-
tion of buoyancy anomalies on the upper or lower surfaces of the ocean (Bretherton 1966, Held
et al. 1995, Lapeyre 2017, Smith and Bernard 2013). The SQG model has been used mostly in
a one-level configuration for vortex and turbulence studies (Carton 2009, Carton et al. 2011,
Tulloch and Smith 2009, Lapeyre and Klein 2006, Klein et al. 2008, Harvey and Ambaum
2011, Harvey et al. 2011, Badin and Poulin 2019). A SQG model coupled with an internal
quasi-geostrophic model has also been used for the study of coupled surface flow-internal
vortex Perrot et al. (2010), Reinaud et al. (2016, 2017a,b).

Recently, the present authors have investigated the linear stability of a circular vortex in
a two-level, SQG model (Vic et al. 2022), comprising both surface and bottom buoyancy
anomalies. The aim of the present work is to extend the linear study of two-level vortices
to their nonlinear dynamics, that is, investigate the possible formation of hetons, or of more
complex vortex compounds, from these two-level vortices (e.g. Gryanik (1983), Hogg and M.
(1985a,b)). For two like-signed buoyancy anomalies, one on each surface, we assess the finite-
amplitude evolution of monochromatic angular perturbations, and the possibility of vortex
breaking, or of topological rearrangement of the initial vortices. The structure and regularity,
or not, of the final vortex compound cannot be assessed from the linear analysis previously
carried out. This is why we resort here to numerical modelling. We also extend our previous
study to parameter regimes which are not accessible to linear analysis, for the sake of simplicity
and of tractability of the analytical solutions.

This paper is organized as follows: we present the SQG model equations, initial conditions
and numerical implementation in section 2. In section 3, we address the nonlinear interaction
of two initially perturbed, like-signed temperature anomalies. These anomalies are initially
aligned vertically. We assess the influence of various physical parameters on the nonlinear
evolution of these unstable vortices. In section 4, we consider the case of two circular, opposite-
signed, temperature anomalies, initially offset horizontally from each other. We study their
possible vertical alignment. A discussion on the stability of these two-level SQG vortices
follows. Finally, conclusions are drawn from the study in section 4.1.

2. Physical and numerical model

2.1. Model equations and initial conditions; physical parameters

2.1.1. Model equations

In the ocean, pressure can be decomposed into a static part (corresponding to the ocean at
rest) p̄ and a dynamic part (related to motion) p′. The former is in hydrostatic balance with
the static density dp̄/dz = −ρ̄g and the latter term can be in hydrostatic balance with the
dynamical part of density ∂p′/∂z = −ρ′g. This balance will hold in our study.

In the quasi-geostrophic model, the Coriolis acceleration mostly balances the horizontal
pressure gradient (the relative acceleration is weak) so that the horizontal velocity is essentially
non-divergent. Then the dynamic pressure is related to a streamfunction ψ via ψ = p′/ρ0f0,
where f0 = 2Ω sin(λ) is the local Coriolis parameter (Ω being the Earth rotation rate and λ
the latitude). The dynamic density is also related to the streamfunction via b = −gρ′/ρ0 =
f0∂ψ/∂z, where b is the buoyancy, and ρ0 is a reference density. Note that the linear equation
of state for seawater is ρ = ρ0[1 − α(T − T0)], in the absence of salinity variation; then the
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dynamic density anomaly is related to the temperature anomaly via ρ′ = −ρ0αT
′ (α is the

thermal dilatation coefficient and T0 is a temperature reference). Therefore b = gαT ′ and,
within a constant ratio, buoyancy and temperature anomalies are equivalent.

The equation governing the quasi-geostrophic model in the bulk of the ocean, is the conser-
vation of potential vorticity q in the absence of forcing and of dissipation:

dq/dt = ∂q/∂t+ J(ψ, q) = 0, z ∈ (−H, 0),

where J(f, g) is the horizontal Jacobian operator and H is the depth of the ocean. The quasi-
geostrophic potential vorticity is

q = ∂2ψ/∂x2 + ∂2ψ/∂y2 + (∂/∂z)[(f2
0 /N

2)(∂ψ/∂z)],

where N is the Brunt Väisälä frequency (the static stability frequency).
When the potential vorticity is zero in the bulk of the ocean but is concentrated at the

surface and at the bottom (q = q1δ(z = 0) + q2δ(z = −H)), the potential vorticity equation
becomes an equation for buoyancy evolution on these two surfaces (Bretherton 1966):

db/dt = ∂b/∂t+ J(ψ, b) = 0, z = 0,−H. (1)

This is the two-level surface quasi-geostrophic (SQG) model, with

b = f0∂ψ/∂z and q = 0.

Assuming that the fluid domain is horizontally unbounded, the buoyancy and the streamfunc-
tion can be written as

b(x, y, z = 0, t) =

∫ ∫
b1(k, l, t) exp(i[kx+ ly]) dk dl,

b(x, y, z = −H, t) =

∫ ∫
b2(k, l, t) exp(i[kx+ ly]) dk dl,

ψ(x, y, z, t) =

∫ ∫
Akl(t) φkl(z) exp(i[kx+ ly]) dk dl,

where k, l are the horizontal wavenumbers, b1, b2 the upper and lower buoyancies, and Akl, φkl
the associated Fourier coefficients. When the Brunt Väisälä frequency is constant (N = N0),
the condition of zero potential vorticity int the bulk of the ocean leads to

d2φkl/dz
2 − (K2N2

0 /f
2
0 ) φkl = 0,

where K2 = k2+l2. Normalizing buoyancy by f0, we have b = ∂ψ/∂z; then, the streamfunction
at the two levels is

ψ(x, y, z = 0, t) =

∫ ∫
ψ1(k, l, t) exp(i[kx+ ly]) dk dl, (2)

ψ(x, y, z = −H, t) =

∫ ∫
ψ2(k, l, t) exp(i[kx+ ly]) dk dl, (3)

where

ψ1(k, l, t) = b1(k, l, t)/[K tanh(KH)]− b2(k, l, t)/[K sinh(KH)],

ψ2(k, l, t) = b1(k, l, t)/[K sinh(KH)]− b2(k, l, t)/[K tanh(KH)].

Equation (1) allows us to march b1, b2 in time, and these fields can then be inverted into the
streamfunction using equations (2) and (3).
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2.1.2. Initial conditions and aim of the simulations

Our two-level SQG model is initialized with a single disk of uniform buoyancy at each
level. The corresponding streamfunction is given in (Vic et al. 2022). Here, we consider the
interaction of two vortices with like-signed buoyancy in section 3 and with opposite-signed
buoyancy in section 4. Any axisymmetric distribution of buoyancy corresponds to a steady
state. Hence in the present case, the pair of circular, co-axial, vortices is steady. In section 3, to
study the stability of these vortices, we perturb their bounding contour (the rim of the disk)
with a monochromatic perturbation in angle, with azimuthal mode m. Using a numerical
model of the two-level SQG equations, we study the nonlinear evolution of the perturbed
vortex. In particular, we assess whether the vortices break, and/or, rearrange as new types of
vortices such as dipoles or tripoles. In section 4, we set the two vortices on each side of the
center of the plane and we study their vertical re-alignment with respect to the horizontal
offset and to the vertical distance between the SQG levels.

2.1.3. Physical parameters

In this study, the vortex radii R1, R2, the buoyancies B1, B2, the deformation radius Rd =
NH/f0 and the azimuthal mode m are the physical parameters under consideration. One value
of buoyancy and the deformation radius can be used to scale time and lengths. Therefore, the
independent (dimensionless) physical parameters are: B2/B1, R2/R1, R1/Rd and m.

Due to the large number of parameters, we first investigate a reference case, for which the
first two parameters are set to 1, and then we perform a sensitivity study of the instability to
the independent physical parameters by varying them separately.

2.2. Numerical model

Our numerical model is a pseudo-spectral model with 256×256 collocation points to determine
the nonlinear regimes (or 512 × 512 points for higher resolution when specified). Equations
are marched in time with a mixed Euler-Leapfrog scheme (an Euler step every 50 time steps).
The spatial derivatives are calculated in Fourier space and FFT’s are used to transform the
fields from physical to Fourier space and back. The domain size is 4π × 4π (except for a
few simulations of vortex alignment, when the vortices are initially distant from each other;
then the domain size is 8π × 8π). Very weak viscosity is used (biharmonic diffusion) with
ν4 = 8 10−7 at 256-resolution and ν4 = 5 10−9 at 512-resolution. The numerical model has
been validated in a previous study of vortex merger Oulhen et al. (2022).

To assess the validity of our results, we also compare them with those of a CASL (contour
advection semi Lagrangian) code often used in the literature for SQG vortex dynamics (Rein-
aud et al. 2016, 2017b,a). Though biharmonic diffusion is weak, the spectral model is more
dissipative than the CASL model. The spectral code tends to slightly spread out the buoy-
ancy contours while the CASL code produces more small vortex fragments. Nevertheless, an
extensive comparison of the two codes over many cases shows that they lead to similar results
when these small fragments are finally dissipated: the main vortices form similar aggregates
in both model results. Here, we present only the results of the spectral code.

3. Nonlinear evolution of linearly unstable SQG vortices with like-signed temperature
anomalies

In the literature, studies have shown that baroclinically unstable vortices in two-layer quasi-
geostrophic flows (with finite internal potential vorticity) could evolve nonlinearly into hetons
(Hogg and M. 1985a,b, Reinaud and Carton 2009b), contra-rotating ellipses (Carton and
McWilliams 1996) or in baroclinic tripoles (Reinaud and Carton 2009a, Sokolovskiy and Car-
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ton 2010). Such nonlinear evolutions are also observed in two-layer ageostrophic shallow-water
flows (Baey and Carton 2002). Here, we study the various nonlinear regimes of linearly unsta-
ble, two-level SQG vortices, with various values of B2/B1, R2/R1, R1/Rd and of the azimuthal
mode of deformation m.

3.1. Vortices with equal radii and intensity

3.1.1. Sensitivity of nonlinear regimes to the vortex size/deformation radius

Firstly, we set B2/B1 = 1, R2/R1 = 1, and we run several simulations, varying R1/Rd for
the elliptical mode of deformation m = 2.

For R1/Rd = 1 or 1.25, the vortices elongate elliptically in each layer and eventually
break into two hetons. This is also the case for baroclinically unstable vortices in the two-
layer(internal) quasi-geostrophic model (Helfrich and Send 1988). For R1/Rd = 1.67, this
hetonic evolution is followed by their splitting. For R1/Rd = 2, the vortices break over a
mixed azimuthal mode 2 and 4 (with a complex elliptical and square deformation) leading to
several fragments. For R1/Rd = 2.5, azimuthal mode 4 now prevails and the vortices break
into four hetons. Finally, for R1/Rd = 5, azimuthal mode 6 is dominant in the unstable vortex
evolution.

Clearly, higher modes of deformation become more unstable as the two levels get closer to
each other vertically. This is related to the link between the horizontal and vertical scales
in the SQG model (this link is due to the vanishing potential vorticity). Short horizontal
scales have a short vertical reach. As the two vortices get closer vertically, their small scale
perturbations can interact more efficiently. This is consistent also with the linear analysis of
instability published previously (Vic et al. 2022).

We have also run several simulations, with the same values of B2/B1, R2/R1 varying R1/Rd
for the triangular mode of deformation m = 3. For R1/Rd = 1, the azimuthal mode 2 is the
most unstable perturbation and the vortices break into two hetons. For R1/Rd = 2, mode
3 is now more unstable, and in the nonlinear evolution, the vortices from three hetons. For
R1/Rd = 5, the vortex breaks on a mode 8. This confirms the growth in wavenumber of the
most unstable wave as R1/Rd increases. The destabilization of short waves as R1/Rd increases
has also been noticed for the baroclinic instability of vortices in two-layer quasi-geostrophic
models (Flierl 1988, Helfrich and Send 1988).

Note that this conclusion also holds for vortices with a smoother radial profile, like the
parabolic profile of buoyancy, detailed in the appendix, or a top-hat profile in relative vorticity;
we observe also the same nonlinear regimes using the CASL code instead of our spectral model.
Therefore this conclusion is generic.

3.1.2. Study of the hetonic evolution of the unstable vortices

Now, we investigate in more detail the case B2/B1 = 1, R2/R1 = 1, R1/Rd = 1, m = 2.
This is our reference case. In figure 1, we present the time evolution of buoyancy at each level
The two vortices evolves regularly and simultaneously at the two levels from near disks to
ellipses. During their evolution, the angle between them increases to reach approximatively
/pi/4 and does not vary substantially afterwards. The aspect ratio λ = b/a ≤ 1 of the ellipses
decreases. Here b and a are the major and minor semi-axis lengths respectively. Further in
time, the vortices evolve towards a peanut shape. This shape indicates the presence of higher
azimuthal modes of deformation, in particular mode m = 4 which is the first harmonic of
the fundamental perturbation (m = 2). The strongly deformed vortices finally break at their
center and give birth to two baroclinic vortex pairs, called hetons (Flierl 1988, Helfrich and
Send 1988).

A Fourier analysis of the azimuthal modes at each level is performed. Results are shown in
figure 2. Clearly, the elliptical components of the deformation grow first, followed in time and
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Figure 1. Hetonic breaking of an unstable two-level SQG vortex with uniform buoyancy ; time-series of horizontal maps
of buoyancy; the parameters are B2/B1 = 1, R2/R1 = 1, R1/Rd = 1, m = 2. The upper row shows the upper level
buoyancy, and the lower row, the lower level one. Times shown are 0, 8, 12, 20 model time units.

in amplitude by the m = 4 mode. The antisymmetric mode m = 1 and the triangular mode
m = 3 always have a small amplitude.
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Figure 2. Fourier analysis of hetonic breaking of the unstable two-level SQG vortex with uniform buoyancy ; the
parameters are B2/B1 = 1, R2/R1 = 1, R1/Rd = 1, m = 2. The various azimuthal modes shown are m = 1, 2, 3, 4.
Left panel: upper level; right panel: lower level.

The ellipticity and the angle of each vortex are calculated from the geometric moments of
buoyancy (not shown here for brevity). The value obtained for the relative angle between the
two vortices is π/4. This relative orientation of the two vortices maximises the destabilizing
influence exerted by each vortex on the other (or, in other words, it maximizes the resonance
of unstable Rossby waves on the vortex contours). It must also be noted that the two vortices
become irreversibly deformed (they acquire the peanut shape) when their aspect ratio is
smaller than 0.25. This critical value is reminiscent of that necessary for the breaking of the
Kirchoff elliptical vortex in two-dimensional incompressible fluids (λ = 0.33).

3.1.3. A vortex evolution model with a single ellipse or with two-level ellipses

Considering the similarity between the evolution of our unstable circular vortices, and the
evolution of strongly elongated Kirchhoff ellipses, we study now the stationarity and the
stability of an elliptical vortex of constant buoyancy with respect to its initial aspect ratio.

First, we perform numerical simulations with a single level SQG model (the buoyancy being
confined to a surface, over an infinitely deep ocean/fluid). Specifically, we run simulations for
a/b = 1/λ = 3, 4, 5. Two simulations are run for each case: a short one with a high-frequency
temporal sampling to determine the initial rotation rate Ω of the ellipses, and a long one to
assess the long-term evolution of each ellipse.

We numerically obtain an estimate for Ω for a unit-buoyancy elliptical vortex in the range
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3 ≤ a/b ≤ 5: Ω ≈ λ. Note that the rotation rate of an elliptical vortex with a parabolic profile
of buoyancy has been computed in (Dritschel 2011) (the streamfunction associated with a
parabolic profile of buoyancy is given here in appendix). This latter paper shows that indeed
Ω is linear in λ in the range λ ∈ [0, 0.3].

Then, we observe that the constant buoyancy elliptical vortex with λ = 1/3 (or with λ =
1/4) elongates to a peanut shape but finally shrinks back to an ellipse. On the contrary, an
elliptical SQG vortex initially with λ = 1/5 elongates irreversibly to a peanut-shaped vortex
and then breaks into two separate vortices (two dipoles). Again, this indicates that higher
modes can grow on an elliptical vortex, during its unsteady, and possibly unstable, evolution;
this confirms our Fourier analysis of the unstable circular vortex, presented above.

Figure 3 shows the time series of buoyancy for the ellipse with aspect ratio 1/5. The growth
of mode m = 4 is clear in the deformation of the ellipse. The growth of this mode, simultaneous
with that of mode m = 2 is confirmed by a Fourier analysis of the elliptical vortex in time.
This Fourier analysis computes the increase of the modal perturbations from their initial
(non-zero) values (i.e. the initial ellipse is subtracted from the instantaneous vortex shape).
As a conclusion of single ellipse simulations, the critical aspect ratio for elliptical SQG vortex
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Figure 3. Top : Time series of horizontal maps of buoyancy showing the nonlinear breaking of an elliptical vortex, with
uniform buoyancy, in a vertically semi infinite fluid; the aspect ratio of the ellipse is b/a = 1/5 initially. Times shown
are t = 0, 4, 8. Bottom ” Fourier analysis of the one-level SQG ellipse with uniform buoyancy. The two azimuthal modes
shown are m = 2, 4. For m = 2 the initial value was subtracted.

breaking (with constant buoyancy) lies in λ ∈ [0.2, 0.25]. Nevertheless, in our vortex instability
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simulations (subsection 3.1.2), the upper level vortex is not isolated from the lower level one.
Therefore, now we perform simulations with identical ellipses of constant buoyancy at the two
levels (with the same buoyancy, same size, same aspect ratio).

For Rd = 1, the elliptical vortices do not break and they eventually evolve to adopt a
steady elliptical shape, for λ > 0.2 as in the one-layer case. For Rd = 0.8, ellipses with aspect
ratios larger than 0.3 are meta-stable and oscillate around a peanut shape (see panel 2 of
figure 3). On the contrary, for Rd = 0.6, the ellipse breaks for a large range of aspect ratios
λ ∈ [0.3, 0.8], because as H or Rd decreases, mode m = 4 becomes more unstable linearly thus
favoring vortex breaking (Vic et al. 2022).

3.2. Vortices with different radii or intensities

We next vary the vortex parameters and we seek to classify and explain their unstable evolu-
tions in these cases. Figure 4 describes the various nonlinear regimes obtained when varying
R2/R1 and B2/B1, for Rd/R1 = 1 (H = 1) and m = 2. In the linear analysis of our previous
paper (Vic et al. 2022), R2/R1 was not varied to keep tractable algebraic equations. Clearly,
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Figure 4. Nonlinear regimes of the unstable two-level Eady vortex, with respect to their radii and buoyancies, for B1 = 1,
R1 = 1, R2 = Rd (H = 1), m = 2.

the linearly unstable vortex breaks into two hetons when the vortex radii are identical at both
vertical levels. When the lower vortex is smaller and less intense (and therefore has a smaller
influence on the upper level vortex than the upper level vortex has on it), the lower level vor-
tex breaks into two symmetric vortices, on each side (horizontally) of the upper level vortex.
This evolution is much slower than that leading to the formation of two hetons. Here, after
nonlinear stabilization, the vortex compound thus obtained is called a Λ-tripole, a structure
observed previously, in particular in the collision of two oppositely-signed hetons (Reinaud
and Carton 2009a, Sokolovskiy and Carton 2010); the formation of a Λ-tripole is illustrated in
figure 5. This figure presents a time-series of horizontal maps of buoyancy, at the upper and
lower levels, for this evolution. In this case, the upper vortex undergoes a strong elongation
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which the lower vortex breaks into two symmetric parts. After several turn-over periods of the
whole structure, the upper level vortex ellipticity relaxes to a smaller value while the lower
two vortices become its satellites on each side. The whole structure rotates and its ellipticity
continues to oscillate, due to the weak dissipation used in the simulation.

Figure 5. Λ-tripole formation from the nonlinear evolution of an unstable two-level SQG vortex with uniform buoyancy
; time-series of horizontal maps of buoyancy; the parameters are B2/B1 = 0.5, R2/R1 = 0.65, R1/Rd = 1, m = 2. The
upper row shows the upper level buoyancy, and the lower row, the lower level one. Times shown are 0, 48, 72, 120 model
time units.

The Fourier analysis of the various azimuthal modes for this case, is shown on figure 6. We
can note that again, only the even modes grow significantly. In the upper layer, mode m = 2
grows with superimposed oscillations, a result of the contra-rotation of the two-ellipses (such
an oscillation is also show in (Carton and McWilliams 1996) Mode m = 4 grows more slowly
but follows the general trend of mode m = 2. Both modal amplitudes reach a peak after
which they stabilize, decay and oscillate. The maximal deformation corresponds to the third
panel of figure 5 where the vortex is very elongated. The last stage (stabilisation) corresponds
to the relaxation of the vortex towards an ellipse in the upper layer and to two satellites
in the lower layer. Note that the lower layer perturbation amplitude is weaker, but that
it acts on a weaker vortex. This lower layer vortex breaks earlier in the evolution of the
whole structure. When the two vortices have similar buoyancies, but with a smaller lower
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Figure 6. Fourier analysis of the unstable two-level SQG vortex forming a Λ-tripole; the parameters are B2/B1 =
1, R2/R1 = 1, R1/Rd = 1, m = 2. The various azimuthal modes shown are m = 1, 2, 3, 4. Left panel: upper level; right
panel: lower level.

vortex, their mutual deformation can become insufficient to break them as hetons. The final
outcome of the instability is two contra-rotating elliptical vortices at the two levels (Carton
and McWilliams 1996). The formation of contra-rotating ellipses is illustrated in figure 7. This
figure presents the upper and lower level maps of buoyancy in the case R1 = 0.5R2, B1 =
B2, m = 2, R1 = Rd. Clearly the vortex ellipticity increases at each level while the vortex
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rotates. The periodic shear exerted by each vortex on the other level vortex leads to a pulsating
aspect ratio. The lower level vortex, which is smaller, is more deformed.

Figure 7. Nonlinear evolution of an unstable two-level SQG vortex with uniform buoyancy in a disk; the parameters
are B2/B1 = 1, R2/R1 = 0.5, R1/Rd = 1, m = 2. The upper row shows the upper level buoyancy, and the lower row,
the lower level one. Times shown are 0, 90, 180 model time units.

When varying R2/R1 and B2/B1, for H = 0.5 and m = 2, higher modes grow and in
particular, when the elliptical mode m = 2 is perturbed, its harmonic m = 4 grows on the
vortex. Both modes are unstable, even if the graver mode is slightly more unstable. Therefore,
the final outcome of the nonlinear simulation is usually two hetons, a Λ-tripole or an ellipse,
with smaller features due to the growth of mode 4 (see figure 8).

Further simulations are performed varying R1/Rd and B2/B1 for R1 = R2 and m = 2.
They show the growth of mode m = 4 for Rd = 0.4, 0.5 and of mode m = 6 for Rd = 0.2 in
agreement with the linear stability analysis of (Vic et al. 2022). Simulations are also performed
with an initial perturbation of mode m = 3. They show the breaking of the unstable vortex
into hetons for Rd = 1, into Λ-tripoles for Rd = 0.5 and vortex breaking on short unstable
waves m = 6, 8 for Rd = 0.2. Again, this confirms the pre-eminence of short waves for small
H.

3.3. A model of the Λ-tripole with three vortices on two levels

We shwo here that an initial aggregate of three vortices, one at the center of the upper
level, two laterally shifted at the lower level, can adjust nonlinearly to a Λ-tripole. We run
a simulation with B1 = 1, B2 = 0.5, R1 = 1, R − 2 = 0.5, H = Rd = 1, d = 4R2 starting
from three circular vortices. Figure 9 shows that each vortex deforms under the influence of
the other two vortices, and in particular, elongates. The upper level vortex finally adjsts as
an ellipse. The lower level satellite vortices then lie along the upper level vortex boundary.

4. Evolution of two offset SQG vortices, with opposite-signed temperature anomalies

In this section, we assess the robustness of a two-level SQG vortex, with opposite-signed
temperature anomalies vertically. More specifically, we study the ability of an initially tilted
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Figure 8. Nonlinear regimes of the unstable two-level Eady vortex, with respect to their radii and buoyancies, for B1 = 1,
R1 = 1, R1 = 2Rd (H = 0.5), m = 2.

vortex to straighten up. In the ocean or in the atmosphere, drifting vortices are affected by a
perturbation with horizontal mode m = 1. This perturbation leads to the tilting of the vortex
with respect to the vertical axis. Again, we consider vortices with uniform buoyancy, that we
offset horizontally by an initial distance d.

Figure 10 shows the various evolutions of tilted vortices for R2/R1 = 1, B2/B1 = 1, with
respect to H (which is also Rd/R1) and to d/R. The nonlinear evolutions are either towards
the vertical re-alignement of the vortices, or their co-rotation around a central axis with little
or no convergence towards the center.

For H ≤ 1.0, alignment occurs for vortices initially distant of 3.3 radii. When vortices are
initially farther away, the simply rotate around the center of the plane. Note that this critical
distance d/R = 3.3 is close to the critical distance for the merger of two vortices, with uniform
vorticity, in two-dimensional incompressible flows (Melander et al. 1988). It is also the critical
distance for the merger of two vortices in a two-layer (internal) quasi-geostrophic model, when
the vortices are confined in the upper layer (Polvani et al. 1989). When H is increase beyond 1,
the critical distance for alignment decreases rapidly. For H = 1.25 it lies below 3. For H = 1.4,
no complete alignment is observed any more. Only a moderate convergence of the two vortices
occurs. Their distance decreases by half and then oscillates.The vortices mostly co-rotate. For
H = 1.5, only a weak convergence followed by a weak radial oscillation, accompanies the
co-rotation of the two vortices. Finally, for H ≥ 2, only co-rotation is observed.

Note the partial similarity with the alignment diagram for two-layer, internal, quasi-
geostrophic vortices, presented in figure 7 of (Polvani 1991). The critical value for alignment
is also d/R ≈ 3.3 and the maximal value of 1/γ (the equivalent of H in our study) is unity.
Note also that, for very weak d/R initially, alignment is replaced by partial convergence.

The final state of the vortex depends on H. Various cases are shown below.
Firstly, for B1 = 1, B2 = −1.0, R1 = R2 = 1.0, H = Rd = 1, d = 1, alignment occurs. Figure
11 shows time series of buoyancy maps. the two vortices overlap more with time. To ensure



June 1, 2023 Geophysical and Astrophysical Fluid Dynamics output

12

Temperature

-6 -4 -2 0 2 4 6

x

-6

-4

-2

0

2

4

6

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Temperature

-6 -4 -2 0 2 4 6

x

-6

-4

-2

0

2

4

6

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Temperature

-6 -4 -2 0 2 4 6

x

-6

-4

-2

0

2

4

6

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
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showing the evolution of a vortex aggregate towards a Lambda tripole. Times shown are t=0, 28, 42 model time units.
The vortex parameters are B1 = 1, B2 = 0.5, R1 = 1, R− 2 = 0.5, H = Rd = 1, d = 4R2

conservation of angular momentum, they shed filaments which are wrapped around the final
vortex. The interaction of the central vortex with the peripheral vorticity supports vortex
contour waves (vortex Rossby waves) which induce an phase shift between the two vortices.
This explains why the inter-centroid distance oscillates while decreasing with time.
The following figure (12) shows that initially the streamlines and the buoyancy isocontours do
not coincide (the upper level is shown here; the situation is symmetric at the lower level). This
indicates that the buoyancy field is unsteady and that buoyancy will be advected towards the
center of the plane (as shown by the streamlines). At the final time of the simulation (same
figure), the buoyancy distribution is not yet steady but the streamlines match the buoyancy
contours better. A longer simulation would be necessary to attain full stationarity, if any.
On the contrary, for B1 = 1, B2 = −1.0, R1 = R2 = 1.0, H = Rd = 1, d = 4, co-rotation

occurs. Figure 13 shows time series of buoyancy maps. Clearly, each vortex rotates around the
center of the plane, as shown by the inter-centroid distance, which varies little. The mutual
influence of the two vortices is manifested by the Rossby waves on the vortex boundaries.
As it appears in this figure, low modes of deformation grow first (modes 1 and 2, leading to
a slightly asymetric ellipse for the vortex contours). Then higher modes grow by nonlinear
interaction: this is seen on the last plot where a square (mode 4) deformation of the vortices
appears. Nevertheless, this contour deformation never leads the vortices to deform so much
to join near the center of the plane. Vertical alignment does not occur.
Finally, the regimes of weak to moderate convergence, with oscillation, lie in between the

previous two regimes. The time variation of the intercentroid distance increases from co-
rotation, to weak to moderate convergence and finally to vertical alignment. The amplitude
of contour deformation also increases. The two joint effects favor alignement.
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4.1. Discussion

Our numerical experiments yielded the following results:

• for like-signed buoyancies at the upper and lower level (contra-rotating vortices), baro-
clinic instability can grow for increasing azimuthal wavenumbers as the fluid height de-
creases. Low mode (m = 2, 3) perturbations lead to hetonic breaking when the two
vortices have comparable size and strength. On the contrary, for asymmetric vortices,
vortex elliptisation or the formation of Λ-tripoles, are observed.

• Clearly, the formation of a Λ-tripole results from a nonlinear equilibration of the linearly
unstable vortex. Higher modes of perturbation saturate at finite amplitude, in particular
mode m = 4. It was also shown that a Λ-tripole is an attractor for nearby states: three
vortices initialised in this configuration, but with a circular shape, deform until they reach
the configuration observed in the nonlinear experiments of baroclinic vortex instability.

• For opposite-signed buoyancies at the upper and lower level (co-rotating vortices), ver-
tical alignment can occur when the total height of the fluid is smaller than, or equal to
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unity, and when the initial distance between the two vortices is smaller than, or equal
to, three radii. Unequal vortices have not been considered here.

• In both the alignment and the co-rotation regimes, vortex Rossby waves are observed.
In the alignment regime, they participate in the overlapping of buoyancy in time, and
to the appearance of a mode 1 deformation (corresponding to a dipolar effect), finally
leading to the convergence of vortices near the center of the plane.

• Intermediate regimes, between the former two, exist, exhibiting radial oscillations at
various degrees. They occur more specifically for larger fluid heights (vertically more
distant buoyancy levels).

These results comfirm and extend those previously obtained with a two-layer (internal)
quasi-geostrophic model: in particular for baroclinic vortex instability (Flierl 1988, Helfrich
and Send 1988). Clear analogies exist in the nonlinear evolutions, in particular the existence of
nonlinearly equilibrated states for linearly unstable vortices, or the possible breaking of linearly
unstable vortices into hetons. Similarly, previous studies found that vortices with like-signed
potential vorticity could align in a two-layer quasi-geostrophic model if the vortices were large
and close enough initially (Polvani 1991). These similarities can be related to the similarity
between the Phillips and Eady models of baroclinic instability of jets (Eady 1949, Phillips
1954). Nevertheless, the SQg model produces more fine-scale features (filaments) and also
leads to higher vertical velocities Lapeyre (2017). This is important in particular for near
surface dynamics. Note that Smith and Bernard (Smith and Bernard 2013) noted that the
SQG model can apply to a depth with a rapid change in stratification. This is the case of the
base of the oceanic mixed layer. Therefore, our study pertains to surface intensified oceanic
vortices, that is, vortices intensified in the upper 200- 400m of the ocean. The internal quasi-
geostrophic model, on the contrary, pertains to deeper vortices. Despite this, results from the
two models concerning the baroclinic instability of vortices, or their ability to align vertically,
are quite similar.

4.2. Conclusion

The present results extend the previous results obtained with internal quasi-geostrophic dy-
namics, but they should be extended to ageostrophic dynamics (either in a two-level SQG+1

model or in a fully stratified, primitive equation, model). Oceanic vortices have complex ver-
tical structures, and, when deformed, they are associated with finite vertical velocities, Such
three-dimensional motions are not included in the present study, and will modify our results,
via the inclusion of high frequency components of velocity.
Concerning observations at sea, new measurement devices (tow-yo, gliders) allow repeated
measurements of interacting vortices at the submesoscale (McWilliams 1985, Chavanne et al.
2010, Bosse et al. 2016). Very high resolution numerical models also show evidence of such
processes (Gula et al. 2015, Morvan et al. 2019). Such interactions were proved to strengthen
these small vortices against the decay due to ambient shear and strain effects, turbulent diffu-
sion, Rossby wave dispersion or topographic interactions, and thus make submesoscale eddies
more robust. In particular it is important to quantify the efficiency of vortex alignment and
vortex merger, in three-dimensional ocean dynamics, when the vortices are not isolated. Such
a quantification will refine assessments of the contribution of oceanic eddies to heat and salt
transport at large-scale.



June 1, 2023 Geophysical and Astrophysical Fluid Dynamics output

15

Appendix A:

Here we calculate the streamfunction associated with a parabolic radial distribution of buoy-
ancy for a two-level SQG vortex

Bs = Bs
0

√
1− r2 He(1− r) Bb = Bb

0

√
1− r2 He(1− r) (A.1)

where He is the Heaviside function. The angular velocity of a single vortex defined by this
steady state is drawn in Figure A2

Indeed, for any buoyancy bs or bb :

ψs(r, φ, z = 0, t) =
∑
n∈N

∫ ∞
0

Jn(ρr)

σ sinh(ρσ)

(
b̂b − b̂s cosh(ρσ)

)
dρ einφ,

ψb(r, φ, z = 1, t) =
∑
n∈N

∫ ∞
0

Jn(ρr)

σ sinh(ρσ)

(
b̂b cosh(ρσ)− b̂s

)
dρ einφ. (A.2)

where σ = N0H/f0 N0 the Brunt-Vaisala frequency, f0 the Coriolis frequency, and H the
thickness of the fluid layer.

Computing the streamfunction of the steady state requires the Fourier transforms of the
steady state buoyancies : for ρ > 0 and n ∈ Z∗ :

B̂s(ρ, n) =
Bs

0

2π

∫ 2π

0

∫ 1

0

√
1− r2 Jn(ρr)re−inφ dr dφ = 0 (A.3)

For n = 0, posing r = sinα, using formula 11.4.10. from Abramowitz Stegun and the
equality

J3/2(x) =

√
2

π

sinx− x cosx

x3/2
,

we have :

B̂s(ρ, 0) = Bs
0

∫ 1

0

√
1− r2J0(ρr) r dr (A.4)

= Bs
0

∫ π/2

0
cos2 α sinα J0(ρ sinα)dα (A.5)

= Bs
0

√
2 Γ

(
3

2

)
J3/2(ρ)

ρ3/2
(A.6)

= Bs
0

√
π

2

J3/2(ρ)

ρ3/2
(A.7)

B̂s(ρ, 0) = Bs
0

sin ρ− ρ cos ρ

ρ3
(A.8)

And similarly for

B̂b(ρ, 0) = Bb
0

sin ρ− ρ cos ρ

ρ3
(A.9)
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From these identities,the steady state streamfunction at the two levels are :

Ψs(r, φ, z = 0, t) =

∫ ∞
0

J0(ρr)

σ sinh(ρσ)

sin ρ− ρ cos ρ

ρ3

(
Bb

0 −Bs
0 cosh(ρσ)

)
dρ (A.10a)

Ψb(r, φ, z = 1, t) =

∫ ∞
0

J0(ρr)

σ sinh(ρσ)

sin ρ− ρ cos ρ

ρ3

(
Bb

0 cosh(ρσ)−Bs
0

)
dρ (A.10b)

The steady state velocity field : the radial velocities are null because the streamfunctions

have no angular component and Uφ =
dΨ

dr
so :

U sφ = Bb
0E(r, σ) +Bs

0F (r, σ) (A.11a)

U bφ = Bb
0F (r, σ) +Bs

0E(r, σ) (A.11b)

where the function E and F are defined by the following integrals :

E(r, σ) =

∫ ∞
0

J1(ρr)

σ sinh(ρσ)

ρ cos ρ− sin ρ

ρ2
dρ (A.12a)

F (r, σ) =

∫ ∞
0

J1(ρr)

σ tanh(ρσ)

ρ cos ρ− sin ρ

ρ2
dρ (A.12b)
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Figure 11. (Top and middle) Time series of buoyancy maps for the upper level (solid lines) and the lower level (dashed
lines) superimposed, showing the evolution of a tilted vortex towards a vertical column. Times shown are t=0, 24, 40
model time units. The vortex parameters are B1 = 1, B2 = −1.0, R1 = R2 = 1.0, H = Rd = 1, d = 1; (bottom) Time
series of the inter-centroid distance for this simulation.
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Figure 12. Maps of buoyancy (black dashed lines) superimposed on streamlines (green solid lines) for the upper level.
Times shown are t=0, model time units. The vortex parameters are B1 = 1, B2 = −1.0, R1 = R2 = 1.0, H = Rd = 1,
d = 1.
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Figure 13. (Top and middle) Time series of buoyancy maps for the upper level (solid lines) and the lower level (dashed
lines) superimposed, showing the co-rotation of a tilted vortex around the plane center. Times shown are t=0, 64, 128
model time units. The vortex parameters are B1 = 1, B2 = −1.0, R1 = R2 = 1.0, H = Rd = 1, d = 4; (bottom) Time
series of the inter-centroid distance for this simulation.
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Figure A1. Graphs of the angular velocity

Figure A2. Graphs of the function E and F for fixed σ = 1


