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ABSTRACT
We consider a three-vortex interaction which leads to the vertical
alignment of two like-signed quasi-geostrophic vortices in a contin-
uously stratified, rotating fluid. The interaction is close to the clas-
sical collapse interaction of three co-planar vortices except that the
vortices centres move on close but different horizontal planes. The
vertical alignment of vortices helps create larger structures and con-
tributes in physical space to the inverse energy cascade observed in
spectral space in geostrophic turbulence.
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1. Introduction

Vortices are ubiquitous, key dynamical features in the oceans (Chelton et al. 2011). They
contribute to a large part of the oceanic transport of mass (Zhang et al. 2014), salt and
heat (Dong et al. 2014). Vortices do not evolve in isolation but interact with other oceanic
features such as currents, coasts and bathymetry. They also interact with other vortices.
The latter kind of interaction plays an important role in the redistribution of energy across
spatial scales. For example, in geostrophic turbulence, energy statistically cascades towards
large scales in spectral space (Charney 1971, Nastrom et al. 1984). One mechanism put
forward to explain in physical space this cascade is the formation of large vortices from the
merger of small vortices. Another physical phenomenon which contributes to the increase
in size of the vortices is the vertical alignment of vortices. This will be briefly discussed in
the following section.

The vertical alignment of two co-rotating vortices was studied in a two-layer system by
Polvani (1991). Reinaud andCarton (2020), however, showed that, in a continuously strati-
fied domain, two co-rotating, unit height-to-width aspect ratio, quasi-geostrophic vortices
alone do not vertically align in general. This is due to the fact that vortices must undergo
strong deformations to vertically align and unit height-to-width aspect ratio vortices are
robust. Moreover the conservation of invariants such as the angular impulse and the total
energy does not allow the translation required for the two vortices to align when initially
horizontally offset. Oblate vortices are more prone to horizontal deformation and may
partially vertically align. The vertical alignment remains nonetheless limited in general.
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In this paper, we consider one of the simplest situations where the two co-rotating
vortices may, at least temporarily, get closer together horizontally. We then study their
potential vertical alignment.We consider a three-vortex interaction where the third vortex
rotates in the opposite direction compared to the two co-rotating vortices which may ver-
tically align. The initial conditions derive from the conditions leading to the exact collapse
of equivalent point vortices when they lie on the same horizontal plane.

This paper is organised as follows. Section 2 presents the quasi-geostrophic (QG)model
used in this study. Section 3 presents the near collapse interactions that lead to the vertical
alignment of two co-rotating vortices, using a point vortex model, an ellipsoidal model
and the full QG model. We discuss how the parameters of the vortices affect the vertical
alignment.We also discuss the limitations of the near collapse interaction to vertically align
vortices. Finally, conclusions are presented in section 4.

2. The quasi-geostrophic model

The main goal of this paper is to consider the interaction of three finite volume vortices
using the QG model in a continuously stratified, rapidly rotating fluid. The QG model is
the simplest dynamical model which takes into account the leading-order effects of the
background planetary rotation and of the stable density stratification. The QG model is
strictly valid for Fr2 � Ro � 1, where Fr = U/(NH) and Ro = U/(fL) are the Froude
and Rossby number respectively. HereU is a characteristic horizontal velocity scale for the
flow, f is the Coriolis frequency, N is the buoyancy frequency and L and H are horizontal
and vertical characteristic length scales respectively. In an unbounded fluid domain, all
flow fields can be derived from a single scalar quantity, the QG potential vorticity anomaly
q, hereinafter referred to as PV for simplicity. The PV, q, is defined from a stream function
ϕ

q = ∂2ϕ

∂x2
+ ∂2ϕ

∂y2
+ ∂2ϕ

∂z2
, (1)

where z = zpN/f . Here x, y, zp are the physical space coordinates, z is a rescaled vertical
coordinate and both f and N have been assumed constant. In the absence of diabatic and
dissipative effects, the PV, q, is materially conserved

∂q
∂t

+ u · ∇q = 0, (2)

where

u =
(

−∂ϕ

∂y
,
∂ϕ

∂x
, 0

)
(3)

is the divergence-free horizontal advecting geostrophic velocity. It should be noted the ver-
tical velocity is not, strictly speaking, zero in the QGmodel, but it is too small to contribute
to the advection of PV in equation (2). Equation (1) can formally be inverted using the
appropriate Green’s function G

ϕ(x) =
∫∫∫

G(x − x′) q(x′) d3x′, (4)
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where

G(x) = − 1
4π |x| . (5)

We motivate our study of the vertical alignment of co-rotating vortices by first consider-
ing an example of a numerical simulation of QG turbulence. Figure 1 shows a view on
the vortex bounding contours for a numerical simulation of QG turbulence. The initial
conditions consist of 800 spherical, in the rescaled (x, y, z)-reference frame, vortices occu-
pying 7% of a triply periodic domain of dimension [−π ,π]3. There are 400 vortices with
PV q = 4π and 400 vortices q = −4π . All vortices have initially the same volume. The
numerical simulation is performed using the Contour Advective Semi-Lagrangian (CASL)
algorithm developed first in two dimensions by Dritschel and Ambaum (1997). The PV
domain is discretised in the vertical direction using 1024 horizontal layers while the veloc-
ity is obtained on a coarser 2563 grid. Equations are marched in time using a fourth-order
Runge–Kutta scheme with a time step set by the vortices PV. At t = 526, we see that some
of the largest structures in the flow are the product of the alignment of vortices. We should
also point out that part of the increase in size of the vortices is a consequence of vortex
merger. The results show the natural occurrence of both vertical alignment and vortex
merger in QG turbulence. It is, however, important to point out that there are limita-
tions to the vertical alignment. One cannot create tall columnar vortices from a repeated
process of vertical alignments of vortices since such tall columnar vortices are unstable
(Dritschel 1996). Nonetheless, two or few vortices may still vertically align and the result-
ing structuremay persist in the flow as far as the height-to-width aspect ratio of the aligned

Figure 1. Vortex bounding contours on a simulation of quasi-geostrophic turbulence at t = 0 (left)
and t = 526 (right). Vortices are viewed orthographically at an angle of 75◦ degrees from the verti-
cal direction. Cyclonic vortices q> 0 are displayed in red, anticyclonic vortices q< 0 in blue. Colour
shading indicates height: dark contours are near the top of the domain, light contour near the
bottom.
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structure is not too large. Note that Reinaud et al. (2003) showed that the most probable
vortex height-to-width ratio is 0.83, hence the most vortices are in fact slightly oblate.

3. Near collapse interactions

3.1. Point vortices

Before focusing on the interaction of the three finite volume vortices, we start by consid-
ering the dynamics of three QG point vortices. Gröbli (1877) showed for the first time
the existence of self-similar solutions for the motion of three vortices in two dimensions.
These solutions may lead to the finite time collapse of the three vortices to a single point
(Aref 1979, Novikov and Sedov 1979, Kimura 1987, Aref 2010). The finite-time collapse
solutionswere extended to three-dimensionalQGdynamics byReinaud (2021) and further
extended to the generalised Euler and QG dynamics by Reinaud et al. (2022). The authors
showed that these interactions may trigger the merger of the two co-rotating vortices.

For the exact finite time collapse of three QG vortices to a single point, all three vortices
must lie on the same horizontal plane z = const, due to the lack of vertical advection inQG.
Hernández-Garduño and Lacomba (2007) showed that only a self-similar motion can lead
to collapse for three vortices in two-dimensional inviscid, incompressible vortex dynamics.
We conjecture the same holds for QG vortices due to the formal similarity between the two
problems. The existence of a self-similar solution also requires that all three QG vortices
lie on the same horizontal plane, as the existence of a time-independent vertical distance
between the vortices is inconsistent with the self-similar motion.

It is, however, interesting to note that Jamaloodeen and Newton (2007) have shown the
possibility of the finite-time alignment (collapse) of two opposite-signed point vortices in a
three quasi-geostrophic vortex interaction in a two-layer system. In this context, the third
vortex does not collapse with the other two vortices.

The initial conditions which lead to the finite-time self-similar collapse of three QG
point vortices are given in Reinaud (2021). We denote κi the strength of the vortex i,
i ∈ {1, 2, 3} and Xi(t) = (Xi(t),Yi(t),Zi) its time-dependent location. It should be noted
that the lack of vertical advection implies that the z-component of xi(t) is in fact time
independent. We denote si(t) the time-dependent length of the side of the triangle formed
by the three vortices, opposite to vortex i, see figure 2. Hence, for example, s3 = |X1 − X2|
is the distance between vortices 1 and 2. It should be noted that since all three vortices lie
on the same horizontal plane the distances si are horizontal distances. The strength of a
QG point vortex is defined as the volume integral of PV over the singular vortex rescaled
by 4π , κi = (4π)−1 ∫∫∫

q(x)δ(Xi − x)d3x. Hence, the stream function induced by vortex
i reads

ϕi(x) = − κi

|Xi − x| . (6)

The conditions for collapse can then be expressed by

κ1κ2

s3(0)
+ κ1κ3

s2(0)
+ κ2κ3

s1(0)
= 0, (7)

κ1κ2s23(0) + κ1κ3s22(0) + κ2κ3s21(0) = 0. (8)
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Figure 2. Geometry for the collapse of co-planar point vortices (Colour online).

Then the distances between the vortices evolve in a self-similar way

si(t) = si(0)f (t), f (t) = 3

√
1 − t

τc
, (9)

where τc is the finite collapse time. The detailed derivation of these equationsmay be found
in Reinaud (2021). For example, setting s3(0) = 2.5, κ1 = κ2 = 1 and s1(0) = 0.6 s3(0) we
obtain s2(0) � 1.418 s3(0) and κ3 � −0.4216. As a diagnostic tool, we define the distance
ratios

ρ1 = s2
s3
, ρ2 = s3

s1
, ρ3 = s1

s2
. (10)

The distance ratios ρi are time independent in a self-similar solution.
Figure 3 shows the three vortex trajectories, the self-similar evolution of the distances

si between the vortices and the evolution of the distance ratios ρi. The collapse time τ

can be analytically predicted, and τc � 5.73. The results confirm the self-similar motion
(ρi = constant) where the three vortices inwardly spiral to a single point (si(τc) = 0).

We next use a near collapse motion to induce the vertical alignment between two
co-rotating vortices. To that purpose, we take the same initial conditions as above, but
we slightly offset the vertical position of the two co-rotating vortices, here vortices 1
and 2. We first use −Z1 = Z2 = δz, while keeping Z3 = 0. Although the motion is no
longer self-similar and the three point vortices no longer collapse to a single point, the
interaction makes the vortices get close together, at least temporarily in the point vortex

Figure 3. (a): Top view on the trajectories for the exact collapse of three co-planar point vortices for
s3(0) = 2.5, s1(0)/s3(0) = 0.6 and κ1/κ2 = 1 and 0 ≤ t < tc � 5.73. Vortex 1 (black), vortex 2 (red)
and vortex 3 (blue). The small solid disks indicate the initial location of the vortices (b): evolution of the
horizontal distances between the vortices si(t), i = {1, 2, 3}with s1 in black, s2 in red and s3 in blue. (c):
Evolution of the ratio ρ i

s of the horizontal distances with ρ1 in black, ρ2 in red and ρ3 in blue (Colour
online).
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Figure 4. (a) Top view on the trajectories for the near collapse of three point vortices for s3(0) = 2.5,
s1(0)/s3(0) = 0.6, κ1/κ2 = 1, z2 = −z1 = 0.2, z3 = 0 and 0 ≤ t <� 7.73. (b) Evolution of the hori-
zontal distances between the vortices si(t), i = {1, 2, 3}. (c) Evolution of the ratio ρ i

s of the horizontal
distances. See caption of figure 3 for colours (Colour online).

limit. Results are presented in figure 4 for δz = 0.2. In this case, the vortices are not
co-planar and we denote si the horizontal distances between the vortices while di is the
full three-dimensional distance,

s1 = (
(X2 − X3)

2 + (Y2 − Y3)
2)1/2 ,

d1 = (
(X2 − X3)

2 + (Y2 − Y3)
2 + (Z2 − Z3)2

)1/2 , . . . (11)

As si � δz, hence di � si, the evolution of si is almost the same as for the exact collapse.
The vortices initially get closer together in an almost self-similar way as shown in figure
4. However, as si decreases, the relative departure between di from si increases and the
motion departs from the self-similar one. Each horizontal distance si reaches a minimum
sm,p
i at t = tm,p

i . We have sm,p
1 � 0.3846 at tm,p

1 � 6.24, sm,p
2 � 0.3846 at tm,p

2 = 6.38, and
sm,p
3 = 0.3926 at 6.31. In the point vortex limit, the vortices then separate and have a near
self-similar expanding motion. We expect that for finite volume vortices, the initial phase
when the vortices get close together can trigger a vertical alignment of the two co-rotating
vortices.

3.2. Ellipsoidal model

We repeat the same calculation but replacing the point vortices by ellipsoids of uniform
PV. We use a simplified dynamical model: the ellipsoidal model developed by Dritschel
et al. (2003). The ellipsoidal model (ELM) is a Hamiltonian model which filters out high
order non-ellipsoidal deformations. It allows to explore a first-order effect of the vortex
deformation. Each ellipsoidal vortex is fully described by its PV, qi, its centre Xi(t) =
(Xi(t),Yi(t),Zi) and a symmetric 3 × 3-matrix Bi(t) such that the boundary of the ellip-
soidal vortex i is defined by (x − Xi)B−1

i (x − Xi)
T . The evolution ofXi andBi is governed

by

dXi

dt
= − 1

κi
L ∂H

∂Xi
, (12)

dBi

dt
= SiBi + BiST

i , where Si = −10
κi
L ∂H

∂Bi
, (13)
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and

H = 1
8π

∫∫∫
|∇ϕ|2d3x, (14)

and κ1 = (4π)−1 ∫∫∫
Vi
qid3x = (4π)−1qiVi = axayaz/3. Vi is the volume of vortex i and

ax, ay and az are the semi-axis lengths of the ellipsoidal vortex in the x, y and z-directions
respectively. Finally

L =
⎛
⎝0 −1 0
1 0 0
0 0 0

⎞
⎠ . (15)

Equations are marched in time with a fourth-order Runge–Kutta scheme and the time
step is set by the maximum vortex PV, 	t = 2π/(40max{q}). We use seven singulari-
ties to model the external stream function induced each vortices, making it accurate at
o(d−5), where d is the distance between the vortices centre to the evaluation point, see
Dritschel et al. (2003) for the details of the method. All three vortices have the same shape
initially. We set ax = 0.3017, ay = 0.3 and az = 0.2. Note that ax is chosen to be slightly
different from ay at t = 0. This is for numerical reasons and does not introduce any sig-
nificant dynamical difference from the case ax = ay at t = 0. Hence the vortices are (near)
spheroids of width-to-height aspect ratio ay/az = r/h = 1.5. The PV of vortices 1 and 2
is set to q1 = q2 = 2π . We set s3(0) = 2.5 and s1(0) = 0.6 s3(0). The PV of vortex 3 is
set to q3 = −0.4216 q1, and we set s2(0) � 1.418 s3(0), corresponding to the initial condi-
tions for the collapse of the equivalent point vortices used in section 3.1. Here, the strength
of vortices 1 and 2, κ1,2 = (4π)−1 ∫∫∫

V1,2
q1,2d3x = 2πaxayaz/3 � 0.0379. We also have

κ3/κ1 = q3/q1 = −0.4216. Similarly to the point vortex simulation, we vertically offset the
centres of the two co-rotating vortices,Z2 = −Z1 ≡ δz = az = 0.2 such that the ellipsoidal
vortices occupy different but contiguous vertical ranges. We keep Z3 = 0. To compare
with the point vortex calculation, one can define an advective time scale τ = s3(0)3/κ1.
For the point vortex calculation τp = 15.625 and for the ellipsoid model τe � 412.1 and
τe/τp � 26.38.

We track the centre of each vortex and plot their trajectory as well as the evolution of
the distances between the centre of the vortices. Results are shown in figure 5. As for the
point vortices, the centres of the ellipsoidal vortices have an inward spiralling, near self-
similarmotion for si � δz. The horizontal distances si also reach aminimum sm,e

i .We have
sm,e
1 = 0.333 at t = tm,e

1 = 165.5 � tm,p
1 τe/τp, sm,e

2 = 0.423 at t = tm,e
2 = 174 � 6.6 τe/τp

which is close to t = tm,p
2 τe/τp = 6.38 τe/τp. Finally we have sm,e

3 = 0.271 at tm,e
3 = 170 =

6.43 τe/τp. Interestingly the minimum horizontal distance between the two co-rotating
vortices s3 is less for the ellipsoidal vortices than for the point vortices, sm,e

3 < sm,p
3 . The

shape of the vortices is shown in figure 6 at t = 170, when s3 = sm,e
3 . Deformation has

helped the two co-rotating vortices get closer together. The two co-rotating vortices also
overlap horizontally indicating a partial vertical alignment of their PV as shown in figure
6. Figure 7 shows the evolution of the three semi-axis lengths denoted a ≤ b ≤ c for the
three ellipsoidal vortices. We have initially az = a and ax = ay = b = c. As the ellipsoidal
vortices deform, their principal semi-axis may move. The weaker vortex, vortex 3 with
|κ3| < κ1,2, exhibits small amplitude deformation from early times. But overall, vortices
deform little until they are close together. Vortices 1 and 2 deform strongly as they start
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Figure 5. (a) Topviewon thevortex centres trajectory for ellipsoidal vortices, near collapseof threepoint
vortices for s3(0) = 2.5, s1(0)/s3(0) = 0.6, q1/q2 = 2π , z2 = −z1 = 0.2, z3 = 0 with ax = 0.3017,
ay = 0.3 and az = 0.2 at t = 0. The circles indicate the initial location of the vortex centres. The crosses
indicate the location of the vortex centres at t = 170. (b) Evolution of the horizontal distances between
the vortices si(t), i = {1, 2, 3}. (c) Evolution of the ratio ρ i

s of the horizontal distances. See caption of
figure 3 for colours (Colour online).

Figure 6. Side and top views on the elliptical vortices for s3(0) = 2.5, s1(0)/s3(0) = 0.6, q1/q2 = 2π ,
z2 = −z1 = 0.2, z3 = 0 with ax = 0.3017, ay = 0.3 and az = 0.2 at t = 170 (corresponding to the
crosses in figure 5) (Colour online).

to overlap. The ellipsoidal model does not allow ellipsoidal vortices to split and the vor-
tices retain their volume at all times. At later times, the vortices start to move away from
each other. To study the long-term vertical alignment of the co-rotating vortices, we need
to consider the full QG dynamics where all vortex deformations, consistent with the QG
model, are allowed.

3.3. Full QG dynamics

We next consider the evolution of three vortices in the full QG dynamics. We use Contour
Surgery (CS) algorithm for three-dimensional QG flow (Dritschel and Saravanan 1994).
The method is purely Lagrangian and the fluid domain is unbounded. The full vertical
range containing vortices is discretised by 200 horizontal layers.We start by using the same
initial conditions as the two examples presented in sections 3.1 and 3.2 but we rescale
all distances such that the total height of the domain containing PV is one. This means
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Figure 7. Evolution of the three semi-axis lengths for the three ellipsoidal vortices using ELM denoted
a ≤ b ≤ c for (a) vortex 1, (b) vortex 2, (c) vortex 3 for s3(0) = 2.5, s1(0)/s3(0) = 0.6, q1/q2 = 2π , z2 =
−z1 = 0.2, z3 = 0 with ax = 0.3017, ay = 0.3 and az = 0.2 (Colour online).

Figure 8. Vortices bounding contours for the near collapse of three vortices for caseA0a: s3(0) = 3.125,
s1(0)/s3(0) = 0.6, q1/q2 = 2π , z2 = −z1 = 0.25, z3 = 0 with ax = ay = 0.375 and az = 0.25 at from
left to right t = 40, 185, 244, 305. In the upper row of panels, the vortices are viewed orthographically
at an angle of 65◦ degrees from the vertical direction. In the lower row of panels, the vortices are viewed
from the top. Colour shading represents height: darker colour contours are near the top of the domain,
lighter colour contours are near the bottom of the domain. Positive PV vortices are seen in shades of red,
negative PV vortices are seen in shades of blue. The range x ∈ [−2.5, 2.5] is shown (Colour online).

Figure 9. (a) Top view on the vortex centres trajectory for QG finite volume vortices near collapse of
threepoint vortices for caseA0a: s3(0) = 3.125, s1(0)/s3(0) = 0.6,q1/q2 = 2π , z2 = −z1 = 0.25, z3 =
0with ax = 0.375, ay = 0.375 and az = 0.25 at t = 0. (b) Evolution of the horizontal distances between
thevortices si(t), i = {1, 2, 3}. (c) Evolutionof the ratioρ i

s of thehorizontal distances. See captionof figure
3 for colours (Colour online).
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Figure 10. Semi-axis lengths for the best-fitted ellipsoid for caseA0a: s3(0) = 3.125, s1(0)/s3(0) = 0.6,
q1/q2 = 2π , z2 = −z1 = 0.25, z3 = 0 with ax = 0.375, ay = 0.375 and az = 0.25 at t = 0. Panel (a) is
for vortex 1, panel (b) for vortex 2 and panel (c) for vortex 3 (Colour online).

that all three vortices have an half height az = 0.25, and vortices 1 and 2 are offset verti-
cal such that Z2 = −Z1 = az = 0.25. The vortices are initially slightly oblate spheroid of
width-to-height aspect ratios ay/az = r/h = 1.5, hence ax = ay = 0.375. All distances are
accordingly rescaled by a factor 1.25 from the cases presented in sections 3.1 and 3.2, and
s3(0) = 3.125. We keep s2(0) = 0.6 s3(0) and q1 = q2 = 2π . This first case is referred to
as case A0a. The advective time scale is τq = s23(0)/κ1 = 414.5 similar to the one of the
ellipsoidal case under the scaling, τq ∼ τe. For each vortex, defined as a contiguous region
of PV, we define its centre X as

X =
∫∫∫

V x d3x∫∫∫
V d3x

, (16)

where V is the vortex (contiguous region of PV) volume. Figure 8 shows the evolution of
the vortex bounding contours, from two viewing angles. As the three vortices get closer
together, vortex 3, which has the smallest PV in absolute value deforms faster and more
than the two co-rotating vortices. A large filament forms from vortex 3 and is entrained by
the velocity field induced by vortex 2 and starts to surround vortex 2. A secondary vortex
starts to roll up at the end of filament. The central part of the filament thins in the horizontal
direction as it is stretched and eventually breaks down into a plethora of smaller filament
and PV debris. Meanwhile vortex 2moves toward vortex 1 and eventually the upper part of
vortex 1 is attracted by vortex 2. The upper part of vortex 1 vertically aligns with the lower
part of vortex 2. As the vortices continue to swirl, the two co-rotating continue to vertically
align while the vortex 3 is mostly destroyed into a large number of small scale secondary
structures forming a ring around the aligned co-rotating vortices. The vertical alignment
of the two co-rotating structures is also favoured by the ejection of filamentary positive
PV and small secondary structures away from themain structure. The figure indicates that
some energy has cascaded to larger scale from the alignment while enstrophy has cascades
towards small scales via the generation of low energy filaments and debris.

Figure 9 shows the trajectories of the centre of the vortices, the evolution of both the
horizontal distances si separating the centre of the vortices and the distance ratios ρi. As
in the previous cases, the initial phase of the vortex motion consists in a near self-similar
inwardly spiralling motion. The late evolution is more difficult to analyse as the vortices
can shed PV and even break into pieces. This makes following individual vortices more
ambiguous. The analysis relies on identifying at any time t the three largest vortices present
in the flow. The rapid jumps in the vortex centre trajectories are associatedwith the splitting
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Figure 11. Same as figure 8 but from left to right case A1 ax = ay = 0.4375 at t = 224 =
0.7357τq,A1, case A2 ax = ay = 0.5 at t = 171.5 = 0.7357τq,A2, case A3 ax = ay = 0.5625 at t =
135.5 = 0.7344τq,A3, case A4 ax = ay = 0.625 at t = 110 = 0.7373τq,A4. The range x ∈ [−3.4, 2.2] is
shown (Colour online).

of the vortices, hence and abrupt change in the position of the centre of the largest part of
the vortex. Figure 10 shows the evolution of the three semi-axis lengths a ≤ b ≤ c of the
ellipsoids best fitted to the three largest vortices in the flow at all times t. The best fitted
ellipsoid to a given vortex is the ellipsoid having the same centre X as the vortex and the
same second-order geometrical moments

Mij =
∫∫∫

V
(xi − Xi)(xj − Xj)d3x, (17)

where we have used an index notation x = (x1, x2, x3) and X = (X1,X2,X3) to simplify
the writing. As for the ellipsoidal vortices discussed in section 3.2, the semi-axis lengths
for vortex 3 shows early oscillations larger than the ones for vortices 1 and 2, albeit remain-
ing small. The strong deformation of vortex 3 is also clearly captured from t � 160. This
strong deformation makes the trajectory of the vortices further depart from the trajectory
of equivalent point vortices. By the end of the simulation, at t = 305 = 0.7358τq, the largest
vortex has volume 1.527 times larger than the initial volume of the vortices.

Keeping the same initial location and the same PV for the three vortices we start by
investigating the influence of the vorticeswidth-to-height aspect ratio, first keeping it larger
than 1.5. We keep az = 0.25 and we set ax = ay = 0.4375 (case A1), 0.5 (case A2), 0.5625
(case A3) and 0.625 (case A4) for a vortex width-to-height aspect ratio ay/az = r/h =
1.75, 2, 2.25 and 2.5 respectively. The associated advective time s3(0)2/κ1 are τq,A1 = 304.5
for case A1, τq,A2 = 233.1 for case A2, τ1,A3 = 184.2 for case A3 and τq,A4 = 149.2 for
case A4. Figure 11 shows the vortices for the four additional cases at roughly the same
normalised time, corresponding to the end of the simulation. Again, in all cases the two
co-rotating vortices have vertically alignedwhile producing a small secondary satellite vor-
tex and filamentary PV. The relative volume of the largest vortex in the flow at the end of the
simulation is reported in table 1. For 1.5 ≤ r/h ≤ 2, the largest vortex is about 50% larger
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Table 1. Volume ratio Vf/Vi of the final volume of the largest vortex to
the initial vortex volume for various values of vortex aspect ratios r/h and
the same initial conditions as for figure 11.

Case A0a A1 A2 A3 A4

r/h 1.5 1.75 2 2.25 2.5
Vf /Vi 1.527 1.504 1.536 0.845 / 1.483 0.854 / 1.474

Notes: Figures in italic considers the combined volume of the two vertically aligned but
disjoint largest co-rotating vortices.

than the initial vortices as a direct consequence of the vertical alignment. For r/h > 2 the
situation is slightly different. The twomain co-rotating vortices have aligned vertically but,
contrarily to the other cases, do not touch. Hence they are identified as two separate coher-
ent structures by the vortex identification algorithm. Each vortex has shed material, with
the largest vortex having lost about 15% of its material. However, the combined volume of
the two vertically aligned, yet disjoint, structure corresponds to 1.47 times the initial vortex
volume, comparable to the other cases for r/h ≤ 2.

We also verify that the vertical alignment of moderately oblate vortices is a generic
feature of a near collapse interaction by investigating the interaction under other ini-
tial conditions. In the next examples, we keep the same vortices 1 and 2 but we set
s1(0) = |X2 − X3| = 0.7 s3(0) instead. The PV of vortex 3, q3 = −0.3841, correspond-
ing to the strength required for the self-similar collapse of three co-planar point vortices.
The distance s2(0) = 1.3056 s3(0). As in the previous case the vortices are vertically off-
set, −Z1 = Z2 = δz = az = 0.25 and Z3 = 0. This case is referred to as case B0. Results
are presented in figure 12. Similar results are presented for s1(0) = |X2 − X3| = 0.8 s3(0)
(case C0) in figure 13. In this case, q3 = −0.48017 q1 and s2(0) = 1.2011 s3(0). In both
cases, the near collapse interaction induces the vertical alignment of the two co-rotating
vortices while the opposite-signed vortex, vortex 3 is partially destroyed and shed many
debris and filaments which swirl around the aligned structure.

In all the examples above the two co-rotating vortices, vortices 1 and 2, have the same
strength. We next consider the near collapse interaction of the three vortices when the
two co-rotating vortices have unequal strength. Since the vortices have uniform PV, their
strength is simply the product of their PV and their volume. Hence we can modify the
strength of a vortex by modifying its volume or its PV (or both). In the first three numeri-
cal experiments, we keep the volume of all three vortices the same, andwe change the PV of
vortex 2. Recall that the initial conditions used in these numerical experiments derive from
the condition for the exact collapse of the equivalent co-planar point vortices. These condi-
tions depend on the strength ratio of the two like-signed vortices. Hence the initial location
and the PV of vortex 3 depends on the PV of vortex 2, even when the other parameters are
fixed.

Figures 14–16 show the results for s3(0) = 3.125, s1(0)/s3(0) = 0.7, Z2 = −Z1 = 0.25,
Z3 = 0 with ax = ay = 0.375, az = 0.25 and q2/q1 = 0.7 (case B1), 0.5 (case B2a) and 0.3
(case B3) respectively. The other parameters, determined by the collapse conditions for
equivalent co-planar vortices are as follows. For case B1 we have q3 = −0.3228 q1 and
s2(0) = 1.3512 s1(0). For case B2, q3 = −0.2323 q1 and s2(0) = 1.3812 s3(0). Finally for
case B3, q3 = −0.14036 q1 and s2(0) = 1.4108 s3(0). As the PV of vortex 2 is reduced, the
deformation of vortex 2 increases. For q2/q1 = 0.7 and 0.5 the interaction is qualitatively
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Figure 12. Vortices bounding contours for the near collapse of three vortices for case B0: s3(0) = 3.125,
s1(0)/s3(0) = 0.7, q1 = q2 = 2π , Z2 = −Z1 = 0.25, Z3 = 0 with ax = ay = 0.375 and az = 0.25 at
t = 140, 200, 210 and 236.5. In the lower row of panels, the vortices are viewed from the top. Colour
shading represents height: darker colour contours are near the top of the domain, lighter colour con-
tours are near the bottom of the domain. Positive PV vortices are seen in shades of red, negative PV
vortices are seen in shades of blue. The domain x ∈ [−2.5, 2.5] is shown (Colour online).

Figure 13. Vortices bounding contours for the near collapse of three point vortices for case C0: s3(0) =
3.125, s1(0)/s3(0) = 0.8, q1 = q2 = 2π , Z2 = −Z1 = 0.25, Z3 = 0 with ax = ay = 0.375 and az =
0.25 at t = 165, 305, 312.5 and 375. Colours and viewing angles are the same as in figure 12. The domain
x ∈ [−2.5, 2.5] is shown (Colour online).

similar to the previous case with q2 = q1. A large part of vortex 2 vertically aligns with vor-
tex 1. For q2/q1 = 0.3, the situation is slightly different. As before a large tongue of PV from
vortex 2 moves toward vortex 1. The tongue of PV is entrained by the rotation induced by
vortex 1 and is stretched. But instead of forming a compact vortex vertically aligned with
vortex 1, it curls around vortex 1. The tongue eventually reconnects on itself to form a
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torus of PV vertically aligned with vortex 1. This is reminiscent of the binary interaction
of two co-rotating vortices of very different PV explored in Özuğurlu et al. (2008). Indeed,
in such cases, instead of merging, the vortex with the small PV is partially strained out and
sheds a large tongue of PV that eventually forms a ring around the large PV vortex. This is
due to the reduced ability of the tongue of PV from low PV vortex to withstand the strain
and shear induced by the other vortex (figure 17 ). In the next set of numerical experi-
ments, we change the overall strength of a vortex by changing its volume. We revisit the
case B2a described above with s3(0) = 3.125, s1(0)/s3(0) = 0.7,Z2 = −Z1 = 0.25,Z3 = 0
with ax = ay = 0.375, az = 0.25 and κ1 = 2κ2, but keeping q1 = q2 = 2π . This means the
volume of vortex 2 is half the volume of vortex 1. For simplicity, vortex 2 has same width-
to-height ratio set to r/h = ax/az = 1.5 as vortex 1. In the first experiment, vortex 3 has
the same volume as vortex 1 (case B2b). Then, in a following numerical experiment, we
keep the same parameters as case B2b except that we increase the width-to-height ratios
of all three vortices to r/h = ax/az = 2 (case B4a). Finally in the third experiment we use
the same set-up as case B4a but let q3 = −q1 = −q2 = −2π and we reduce the volume of
vortex 3 to keep the same strength (case B4b).

Results are presented in figure 12. We first compare cases B2a from figure 15 and B2b
from figure 12. The early evolution (not shown) is very similar between the two cases. In
case B2a vortex 2 has a larger volume than in case B2b. Hence as it approaches vortex 1, the
minimum distance between the edges of the vortices 1 and 2 is smaller in case B2a than in
B2b for an overall similar trajectory. In case B2a the main first deformation is the defor-
mation of the low PV vortex 2 which leads to the vertically alignment of some of the PV of
vortex 2 with vortex 1. This weakens the interaction of vortex 2 with the opposite-signed
vortex 3 as PV from vortex 2 migrates towards vortex 1 and away from vortex 3. Hence
vortex 3 remains compact. On the contrary, in case B2b, vortex 2 has a larger PV than in
case B2a and is its edge is also further away from the edges of vortex 1. The deformation of

Figure 14. Vortices bounding contours for the near collapse of three point vortices for case B1: s3(0) =
3.125, s1(0)/s3(0) = 0.7, q1 = 2π , q2 = 0.7 q1, Z2 = −Z1 = 0.25, Z3 = 0 with ax = ay = 0.375 and
az = 0.25 at t = 246, 250, 513 and 362.5. Colours and viewing angles are the same as in figure 12. The
domain x ∈ [−2.5, 2.5] is shown (Colour online).
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Figure 15. Vortices bounding contours for the near collapse of three point vortices for case B2a: s3(0) =
3.125, s1(0)/s3(0) = 0.7, q1 = 2π , q2 = 0.5 q1 Z2 = −Z1 = 0.25, Z3 = 0 with ax = ay = 0.375 and
az = 0.25 at t = 250, 322.5, 335 and 360. Colours and viewing angles are the same as in figure 12. The
domain x ∈ [−3.1, 1.9] is shown (Colour online).

Figure 16. Vortices bounding contours for the near collapse of three point vortices for case B3: s3(0) =
3.125, s1(0)/s3(0) = 0.7, q1 = 2π , q2 = 0.3 q1, z2 = −z1 = 0.25, z3 = 0 with ax = ay = 0.375 and
az = 0.25. Colours and viewing angles are the same as in figure 12. The domain x ∈ [−3.1, 1.9] is shown
(Colour online).

vortex 2 towards vortex 1 is less pronounced. The interaction between vortices 1 and 2with
vortex 3 leads to the straining of vortex 3. Eventually vortex 2 vertically aligns with vortex 1
as it becomes sufficiently close to vortex 1, at later stage compared to case B2a. Meanwhile
vortex 3 gets further strained around the aligned vortex. As expected the ability of vortices
to deformwhen subjected to the strain and shear induced by the other vortices is a key fac-
tor in the complex nonlinear evolution of the vortices. Case B4a is qualitatively similar to
case B2b. The evolution of B4b is, however, qualitatively different. Here, vortex 3 is smaller
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Figure 17. Vortexbounding contours for, from left to right, caseB2b at t = 360 showing x ∈ [−2.8, 2.2],
case B4a at t = 205 showing x ∈ [−3.1, 1.9], case B4b at t = 250 showing x ∈ [−2.5, 2.5] and case A0b
at t = 305 x ∈ [−2.5, 2.5]. Colours and viewing angles are the same as in figure 12 (Colour online).

with a larger PV compared to case B4a. As a consequence, vortex 3 is less prone to defor-
mation and remains compact. As vortex 3 retains more of its material it remains stronger
in the interaction, which in turns weakens the interaction between vortices 1 and 2. Recall
that only the size andPVof vortex 3 differ between the two cases (while its strength remains
the same). In case B4b, a smaller part of vortex 2 has vertically aligned with vortex 1. For
example at t = 205 vortex 1 has a volume V1(t = 360) = 0.944V1(t = 0) for case B4a,
which is comparable to V1(t = 360)/V1(t = 0) = 0.922 in case B4b. Vortex 1 vertically
aligns with a portion of vortex 2 of volume Va,2(t = 360) = 0.388V2(t = 0) in case B4a
while it is only Va,2(t = 360) = 0.1613V2(t = 0) in case B4b. The alignment of vortices 1
and 2 is favoured when vortex 3 is eventually weakened (strained out), after having played
its role in the near collapse interaction and made vortices 1 and 2 close together.

Finally we revisit case A0a by setting q3 = −q1 = −2π and changing its volume to
maintain κ3 = −0.4216κ1. This case is referred to as A0b and is shown in figure 12. Again,
the main first difference between the two cases is the fate of vortex 3. The low PV/large
volume vortex 3 of case A0a is strained out while the large PV/small volume vortex 3 of
caseA0b remains compact. At t = 305, howeverVf /Vi = 1.490 for caseA0bwhich is only
marginally smaller than for the case A0a at the same time with Vf /Vi = 1.504 as reported
in table 1. In this case, the two co-rotating vortices are initially identical and the late evolu-
tion of the counter-rotating vortex 3 has less influence on the vertical alignment of vortices
1 and 2.

In the numerical experiments of near collapse interactions described above, the inter-
actions resulted in a partial alignment of the two co-rotating vortices. Results show that
the ability of the vortices to deform is central to the alignment. For a given vortex strength,
large volume, low PV vortices aremore likely to deform. The vortex width-to-height aspect
ratio also plays a role on the vortices’ ability to deform. In the numerical experiments above,
we have focused on oblate vortices with a width-to-height aspect ratio of 1.5 and above. In
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Figure 18. (a) Top view on the vortex centres trajectory for QG finite volume vortices near collapse of
three point vortices for case A5: s3(0) = 3.125, s1(0)/s3(0) = 0.6, q1/q2 = 2π , z2 = −z1 = 0.25, z3 =
0withax = ay = az = 0.25 at t = 0. (b) Evolution of the horizontal distances between the vortices si(t),
i = {1, 2, 3}. (c) Evolution of the ratio ρ i

s of the horizontal distances. See caption of figure 3 for colours
(Colour online).

the next section, we discuss some limitations of the near collapse interaction to trigger the
vertical alignment of the two co-rotating vortices.

3.4. Less oblate vortices

We first revisit the case A0a but changing the width of the vortices. We first set ax =
ay = az = 0.25 keeping all the other parameters the same as case A0a. We denote this
case A5 and the vortices are spherical r/h = 1. We also consider the same interaction
but with ax = ay = az = 0.3125 corresponding to r/h = 1.25 (case A6). In both cases,
the vortices are more less oblate than in case A0a and they deform less. As a conse-
quence, the two co-rotating vortices do not vertically align. Results are shown in figure 18
for case A5 and in figure 19 for case A6. As in the previous cases the vortices start by
spiralling inwardly, see panels (a) of figures 18 and 19. The early motion of the vor-
tices is nearly self-similar, as shown in the panels (c) of both figures. All three horizontal
distances si between the vortices reach a minimum before increasing again. Then the
late evolution follows a near self-similar expanding motion. One of the main differ-
ences between the trajectories of the vortices and the ones of equivalent point vortices
is the significant difference between the values of three minimum distances smin

i for the
finite volume vortices. The lack of alignment and the eventual expanding motion sug-
gests that the vortices need to be relatively oblate to deform enough for the alignment to
occur.

3.5. Influence of the vertical offset δz

In the previous numerical experiments, the two co-rotating vortices are vertically offset
such that they occupy contiguous regions in the vertical direction, i.e. δz = az. Hence the
vortices may align on the top of one another to create a single region of contiguous PV,
as seen for example in cases A0a, A1 and A2. We have, however, seen that the interac-
tion may erode the bottom of vortex 2 (the upper vortex in the co-rotating pair) and/or
the top of vortex 1 (the lower vortex in the vortex pair). In that case, the vortices may
still eventually vertically align even if there is a small vertical gap with no PV between
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Figure 19. (a) Top view on the vortex centres trajectory for QG finite volume vortices near collapse of
three point vortices for case A6: s3(0) = 3.125, s1(0)/s3(0) = 0.6, q1/q2 = 2π , z2 = −z1 = 0.25, z3 =
0 with ax = ay = 0.3125 and az = 0.25 at t = 0. (b) Evolution of the horizontal distances between the
vortices si(t), i = {1, 2, 3}. (c) Evolution of the ratio ρ i

s of the horizontal distances. See caption of figure 3
for colours (Colour online).

Table 2. Case reference and indication of the outcome of the interaction for
the three vortices for s3(0) = 3.125, s1(0)/s3(0) = 0.6, q1 = q2 and az =
0.2 and various values of ax = a − y = rh and δz.

rh 0.375 0.5 0.625 0.75

δz = 0.3125 case D0a: N case D1a: A case D2a A case D3a A
δz = 0.375 case D0b:N case D1b:N case D2b P case D3b: A

Notes: Nmeans no alignment. Ameans alignment. Pmeans partial alignment.

the two aligned co-rotating vortices. It is therefore interesting to investigate the possi-
bility for the two co-rotating vortices to vertically align when δz > az at t = 0. We run
two new sets of numerical experiments. In both sets, we use the same basic set-up with
s3(0) = 3.125, s1(0)/s3(0) = 0.6, κ1 = κ2 as in case A0a. In all cases, we set az = 0.25 and
we vary ax = ay = rh = 0.375, 0.5, 0.625, 0.75 for two values of δz = 0.3125 and 0.375.
The third, counter-rotating vortices remains at Z3 = 0. Results are first summarised in
the table 2. Increasing the vertical offset δz makes the initial condition further from the
exact collapse conditions. It also weakens the interaction between the two co-rotating vor-
tices as they never can get closer than the non-zero vertical gap between them. On the
other hand, as seen before, increasing the width of the vortices favours the alignment.
Results show that, as expected alignment, is favoured by small δz and large rh. Exam-
ples of such alignment are presented in figure 20 for caseD1awith (rh, δz) = (0.5, 0.3125),
D2awith (0.625, 0.3125),D3awith (0.75, 0.3125) andD3bwith (0.75, 0.375). For caseD0a
with (rh, δz) = (0.375, 0.3125), D0b with (0.375, 0.375) and D1b with (0.5, 0.375) the two
co-rotating do not vertically align and the trajectories of the vortices centres (not shown)
resembles the one of casesA5 orA6 shown in figures 18 and 19. Another, new intermediate
regime is observed for caseD2bwith rh = 0.625 and δz = 0.375, where the two co-rotating
vortices nearly align and the third counter rotating remains nearby the co-rotating pair.
The horizontal distances si between the three vortices oscillate slightly but remain roughly
comparable through time. The evolution of the vortex trajectories, distances si and distance
ratios ρi is presented in figure 21 for that case. Top views on the vortex bounding contours
are presented in figure 22.
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Figure 20. Vortices bounding contours for the near collapse of three point vortices for, from left to right
case D1a at t = 512, D2a at t = 363, D3a at t = 212 and case D3b at t = 461. Colours and viewing
angles are the same as in figure 12 (Colour online).

Figure 21. (a) Top view on the vortex centres trajectory for QG finite volume vortices near collapse
of three point vortices for case D2b with s3(0) = 3.125, s1(0)/s3(0) = 0.6, q1/q2 = 2π , Z2 = −Z1 =
0.375, Z3 = 0with rh = 0.625, az = 0.25 at t = 0. (b) Evolution of the horizontal distances between the
vortices si(t), i = {1, 2, 3}. (c) Evolution of the ratio ρ i

s of the horizontal distances. See caption of figure
3 for colours. (Colour online).

Figure 22. Top view on the vortex bounding contour for case D2b with s3(0) = 3.125, s1(0)/s3(0) =
0.6, q1/q2 = 2π , Z2 = −Z1 = 0.375, Z3 = 0 with rh = 0.625, az = 0.25 at from left to right t = 850,
886, 955 and 1000 (Colour online).

3.6. Influence of the shape of the vortices

We finally consider the influence of the initial geometrical shape of the vortices. In the
previous numerical experiments, the vortices were initially ellipsoidal. Vortices 1 and 2 are
occupying contiguous yet different heights. Hence here is little volume of PV in the range
of height where the vortices 1 and 2 are close together in the vertical direction. Hence, we
next consider the interaction of cylindrical vortices, increasing the volume of PV in the
vertical the range of heights where the vortices potentially align. We expect this choice to
favour the vertical alignment of the two co-rotating vortices.
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Figure 23. (a) Top view on the vortex centres trajectory for QG finite volume vortices near collapse of
three point vortices for case E0: s3(0) = 3.125, s1(0)/s3(0) = 0.6, q1/q2 = 2π , Z2 = −Z1 = 0.25, Z3 =
0 with D = 0.5, H = 0.5 at t = 0. (b) Evolution of the horizontal distances between the vortices si(t),
i = {1, 2, 3}. (c) Evolution of the ratio ρ i

s of the horizontal distances. See caption of figure 3 for colours
(Colour online).

Figure 24. Vortices bounding contours for the near collapse of three vortices for case E1: s3(0) = 2.5,
s1(0)/s3(0) = 0.6, q1 = 2q2 = 2π , z2 = −z1 = 0.2, z3 = 0with rh = 0.25 and h = 0.2, at t = 25, 171,
180 and 241. Colours and viewing angles are the same as in figure 12 (Colour online).

Figure 23 shows the results for s3(0) = 3.125, s1(0) = 0.6 s3(0), q1 = q2 = 2π . All three
vortices are initially a cylinder of uniform PV of diameter D = 0.5 and height H = 0.5
centred at−Z1 = Z2 = H/2 = 0.25 and Z3 = 0. The other parameters are the same as for
case A0a with q3/q1 = −0.4216 and s2(0) � 1.418 s3(0). We refer to this case as case E0.
As for the case for spherical vortices (case A5), the vortices do not deform enough nor
the two co-rotating vortices ever become close enough to vertically align. The trajectory
of the vortex centres, the evolution of the horizontal distances between the vortices and
their ratios are similar to the ones for the spherical vortices shown in figure 18. Increasing
the vortices diameter to D = 0.625 (case E1) and D = 0.75 (case E2) while keeping the
other parameters the same as case E0 triggers the vertical alignment of the two co-rotating
vortices. It should be noted that the vortexwidth-to-height ratio, the vortex centre locations
and the vortex strength ratios of case E1 are the same as the one of case A6. The only
difference is the initial geometrical shape of the vortices. The co-rotating vortices align in
E1 and do not align in A6. Hence, as expected, the increase of the PV volume available
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Figure 25. Vortices bounding contours for the near collapse of three vortices for case E2: s3(0) = 2.5,
s1(0)/s3(0) = 0.6, q1 = 2q2 = 2π , z2 = −z1 = 0.2, z3 = 0 with rh = 0.3 and h = 0.2, at t = 25, 109,
117.5 and 144. Colours and viewing angles are the same as in figure 12 (Colour online).

in the region where vortices 1 and 2 can align increase the vortices ability to align. The
overall efficiency of the alignment is, however, similar to the cases with ellipsoidal vortices
with the ratio of the volume of the largest vortex in the flow Vf to the initial vortex volume
Vi is Vf /Vi = 1.55 for case E1 at t = 241, and it is Vf /Vi = 1.46 for case E2 at t = 144
(figures 24 and 25).

4. Conclusion

In this paper, we have studied the vertical alignment of two co-rotating vortices. The
alignment is triggered by a near collapse interaction between three vortices. The con-
dition for the near collapse interaction derives from the condition of exact collapse for
three co-planar point vortices. For finite volume vortices, the vertical alignment of the two
co-rotating vortices relies on the deformation of the vortices as they approach each other. In
our numerical experiments, we have shown that oblate vortices can get close enoughduring
the interaction to undergo the necessary deformation to trigger the vertical alignment of
the two co-rotating vortices. More compact vortices may not align because they do not get
close enough or do not deform enough to align. In the case the vortices align, the largest
vortex forms either as a single contiguous structure or a compound structure consisting
of two neighbouring, vertically aligned structures. The resulting structure is about 50%
larger than the initial vortices for equal PV and equal volume co-rotating vortices. This pro-
vides an efficient route for an upscale cascade of energy in physical space. As for the binary
merger interactions of two vortices, the alignment of different size and/or strength vortices
is typically less efficient. Meanwhile we often see a plethora of filaments, small debris and
secondary satellite vortices surrounding the aligned structure. These feed a direct cascade
of enstrophy. In particular, the main aligned structure is often surrounded by opposite-
signed PV coming from the third counter-rotating vortex which has been partially strained
out. This situation is increasingly observed in high-resolution realistic simulation in basin



GEOPHYSICAL & ASTROPHYSICAL FLUID DYNAMICS 313

using the primitive equations (Aguiar et al. 2013, D’Addezio et al. 2020, Gula et al. 2016).
For a moderately increased vertical offset, we also observed a case where all three vor-
tices remain in close proximity. All these configurations of vortices are reminiscent of
what can be observed in areas of vortex formation such as the Gulf of Cadiz (Ambar et
al. 2008, Quentel et al. 2011) wheremultiple vortices coexist in the same area. Finally when
the vortices cannot align because they do not deform enough during the phase of the evo-
lution when they are at their closest, the vortices separate continuemoving apart from each
other in a near self-similar way, transporting their properties away over long distances.
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