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Applying a variational analysis, a minimum-enstrophy vortex in three-dimensional (3-D)
fluids with continuous stratification is found, under the quasi-geostrophic hypothesis. The
buoyancy frequency is held constant. This vortex is an ideal limiting state in a flow with
an enstrophy decay while energy and generalized angular momentum remain fixed. The
variational method used to obtain two-dimensional (2-D) minimum-enstrophy vortices
is applied here to 3-D integral quantities. The solution from the first-order variation is
expanded on a basis of orthogonal spherical Bessel functions. By computing second-order
variations, the solution is found to be a true minimum in enstrophy. This solution is weakly
unstable when inserted in a numerical code of the quasi-geostrophic equations. After a
stage of linear instability, nonlinear wave interaction leads to the reorganization of this
vortex into a tripolar vortex. Further work will relate our solution with maximal entropy
3-D vortices.

Key words: quasi-geostrophic flows, vortex dynamics, variational methods

1. Introduction

1.1. Brief review of minimum-enstrophy vortex and maximum-entropy theories
in 2-D fluids

In homogeneous incompressible fluids, free-decay two-dimensional (2-D) turbulence is
characterized by the spontaneous appearance of vortices which grow by merging with
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their homostrophic partners, and shed filaments to conserve angular momentum during
the merging events (McWilliams 1984, 1990b). This increase in vortex sizes is the
physical manifestation of the upscale cascade of energy in wavenumber space, while
the production of thin filaments is associated with the downscale cascade of enstrophy
(variance of vertical vorticity). While kinetic energy is only weakly (or not) dissipated
at large scales, enstrophy is erased by viscosity at the dissipation wavenumber that
often corresponds to the numerical grid size in simulations. In the absence of forcing,
dissipation, bottom topography and beta effect, the final state of such a turbulent flow is a
pair of contra-rotating vortices. The search for the spatial structure of final vortex states in
2-D turbulence has motivated the original work on minimum-enstrophy vortices (hereafter
MEVs) (Leith 1984a,b), and more recently, a search for exact coherent structures in 2-D
turbulent flows (Zhigunov & Grigoriev 2023). In his seminal paper, Leith used variational
principles to derive the velocity profile of an axisymmetric vortex in 2-D incompressible
flows, with minimal enstrophy for a given energy, angular momentum or circulation. He
found two different MEVs, one with finite angular momentum (MEV M), one with finite
circulation (MEV C), both described by Bessel functions of the radius.

In conclusion, Leith mentioned that final states in numerical simulations of 2-D
turbulence may look more like MEV C than MEV M. Furthermore, his MEVs
were barotropically unstable to small-scale perturbations, leading to non-axisymmetric
(tripolar) vortices with even lower enstrophy.

Further work was done by Kozlov (1994), studying the compensated MEV, that is a
MEV with different vorticity distributions, q, in the core and in the periphery; he studied
a non-axisymmetric vortex. But this MEV had a piecewise-constant vorticity distribution
and not a continuously distributed one. Later, efforts to calculate tripolar MEVs in 2-D
flows, with continuous vorticity distributions, and having a linear vorticity–streamfunction
relation, were not successful. Furthermore, numerical experiments suggested that steady
tripolar states have nonlinear q − ψ relations, withψ the streamfunction. Theoretical work
done with such nonlinear q − ψ relations also had to deal with critical layers, leading to
very complex algebra.

Approaching the final state of free-decay 2-D turbulence from a statistical mechanics
point of view, Smith (1991) determined that the squared-Lorentzian vortex ∇2ψ(r) =
ζ0/[1 + (r/r0)

2]2, with ζ0 the amplitude, r the radial coordinate and r0 the characteristic
radius, was an exact solution to the mean field theory.

Huang & Driscoll (1994) reported an experiment showing that mixing is not very well
realized in the core of the vortex. Their experiment was based on an electron plasma
confined by a magnetic field. For high values of the magnetic field, the time evolution
of the electron density becomes equivalent to the Euler dynamics of the vorticity and
a quasi-inviscid flow is produced. Huang and Driscoll studied the relaxation of an initial
hollow column of electrons towards an axisymmetric meta-equilibrium state and compared
their result with existing theories of 2-D almost inviscid fluid dynamics. They claimed that
their equilibrium density vorticity profile exhibited close agreement with a MEV restricted
to a subdomain to avoid spurious negative vorticity values but differed substantially from
maximum-entropy predictions.

Further work was done using the statistical theory. Chavanis & Sommeria (1996,
1998) solved the 2-D Euler equations in the limit of the statistical theory where
maximum-entropy states are equivalent to minimum-enstrophy states and proposed a
convenient classification of the maximum-entropy states for bounded and unbounded
domain.
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A 3-D minimum-enstrophy vortex in stratified QG flows

Motivated by the experiments of Huang & Driscoll (1994), Brands et al. (1999)
compared vortex structures having maximal entropy with those having minimal
enstrophy. They described the minimum-enstrophy principle as an approximation of the
statistical theory. In the case investigated by Huang and Driscoll, they claimed that this
approximation even yielded a better agreement with experiments than the full statistical
theory because the relaxation of the system toward the maximum-entropy state was not
complete. However, they emphasized the problem of spurious negative oscillations and
explained that this agreement cannot hold in more general cases. Nevertheless, they
concluded that when relaxing the angular momentum constraint, enstrophy minimization
was consistent with the physics of the system except near the maximum accessible energy.
Therefore, the MEV remained a useful solution for the statistical theory of the Euler
equation, except at high energy.

1.2. Motivation for the work
Following the review in § 1.1 the MEV’s ability to represent axisymmetric coherent
vortices in 2-D turbulence has been debated. However, two aspects have been left
untouched.

First, non-axisymmetric 2-D MEVs with continuous vorticity distributions have never
been studied; this is important since vortices are rarely axisymmetric. This point will
deserve a future study.

Second, a generalization to the continuously stratified three-dimensional (3-D)
geostrophic turbulence including vortex stretching remains to be done. In 3-D geostrophic
turbulence, according to Charney’s work (Charney 1971), the energy is equipartitioned
horizontally and vertically (between kinetic and potential components). This can lead to
isotropic vortex structures (McWilliams, Weiss & Yavneh 1991).

Following this statement, we look for isotropic vortices, minimizing potential enstrophy
with given total energy and generalized momentum. This is in accordance with the
cascades of geostrophic turbulence, associated with horizontal and vertical growth of the
vortices and with the formation of small-scale filaments, containing a substantial amount
of potential enstrophy, and which are dissipated by viscosity (Rhines 1979; McWilliams
1989, 1990a). Providing the 3-D structure of such MEVs and assessing their robustness
are the aim of the present article.

The article is organized as follows. The first part is dedicated to the methodology to
construct the functional to minimize, including the calculation of enstrophy and global
invariants such as energy, momentum and Casimir’s. In the second part, the calculus of
variations and the solution are obtained and are discussed. Finally, we assess numerically
the stability and evolution of such 3-D MEVs.

2. Methodology

Considering rotating stratified flows, we work in the framework of the continuously
stratified quasi-geostrophic (QG) equations (Charney 1948; Charney & Phillips 1953).
The equations require two conditions to be satisfied by the flow: a small Rossby number
(Ro = V/( f0R)) and an order-one Burger number (Bu = (NH/( f0R))2 ∼ 1), where N(Z)
and f0 are the stratification frequency and the Coriolis parameter, H and R are the vertical
and horizontal scales of the vortex (Z is the vertical coordinate) and V the maximum
velocity of the flow. In the absence of forcing and of dissipation, the QG model is governed
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by the equation of potential vorticity conservation:

Dtq = 0,

q = (∂2
x + ∂2

y )ψ + ∂Z

(
f 2
0

N2(Z)
∂Zψ

)
,

Dt = ∂t + ug∂x + vg∂y,

⎫⎪⎪⎬
⎪⎪⎭ (2.1)

with (ug = −∂yψ, vg = ∂xψ) the horizontal geostrophic velocities. Usually, we apply the
boundary conditions ∂Zψ(Z = 0,−H) = 0. In the special case of constant stratification
(that we consider here) N(Z) = N0, and using the constraint on Bu, we can rescale the
vertical coordinate Z via z = N0Z/f0 and the relation between the potential vorticity
and the streamfunction becomes q = (∂2

x + ∂2
y + ∂2

z )ψ = ∇2ψ . In these coordinates, the
potential vorticity is simply the Laplacian of the streamfunction.

We define a 3-D (local) radius r2 = x2 + y2 + z2 and finally, we scale again it by the
vortex radius s = r/R. We also define a 2-D radius via ρ2 = x2 + y2 scaled as σ = ρ/R.
In this spherical frame of reference, θ and φ respectively refer to the latitude (positive
towards the North) and the longitude (positive towards the West).

Our goal is to find a spherically symmetric vortex in the QG model, satisfying a minimal
enstrophy constraint while energy (and possibly other integral quantities) is prescribed.
Our vortex should have a finite extent. Therefore, we assume that the potential vorticity
is zero beyond a radius R. Thus, for r > R, that is for s > 1, we have ∇2

sψ = 0 =
1
s2 ∂s(s2∂sψ) where ∇2

s = (1/s2)∂s(s2∂s) is the non-dimensional Laplacian, leading to
a solution ψ(s > 1) = K/s, with K a constant to be determined from continuity of the
velocity field at s = 1.

We next determine the internal structure of the vortex (for s < 1). We first list the
integral invariants of the unforced, non-dissipative QG equations, in order to build the
functional of streamfunction F(ψ) the extremum of which we wish to determine. Let us
define Z the enstrophy, E the energy and L = ∫

ρ2q dV the angular momentum with the
horizontal radius ρ = Rs cos(θ) as well as the associated non-dimensional quantities Ẑ, Ê
and L̂. We also define the non-dimensional streamfunction ψ̂ such that ψ = Ψ ψ̂ , with Ψ
the scale of the streamfunction. We write

Ẑ = R
Ψ

Z = 2π

∫ 1

0
s2(∇2

s ψ̂)
2 ds,

Ê = E
RΨ 2 = 2π

∫ 1

0
s2|∇sψ̂ |2 ds = 2π

∫ 1

0
s2(dψ̂/ds)2 ds,

L̂ = L
R3Ψ

= 8π

3

∫ 1

0
∇2

s ψ̂s4 ds.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(2.2)

Using the radial Laplacian only is justified since ψ̂ must not depend on the spherical angles
for a centrally symmetric vortex in 3-D. Finally, there is an infinity of Casimir invariants
for the unforced, non-dissipative QG equations, among which are the potential vorticity
integral C (and its non-dimensional form Ĉ):

Ĉ = C
RΨ

= 4π

∫ 1

0
s2(∇2

s ψ̂) ds. (2.3)
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A 3-D minimum-enstrophy vortex in stratified QG flows

Nevertheless, it should be noted that, if the vortex is isolated (that is, if it does not advect
the whole fluid in rotation), this last integral must vanish. In the following, we drop the hat
for non-dimensional quantities.

Following Leith (1984b), we could have performed variations of the functional F(ψ)
with respect to the vortex radius R, but this would have led to a relation between the
Lagrange multipliers, and the enstrophy that we minimize (which is therefore unknown).
We refer the reader to Appendix A for more details.

Therefore, we choose the functional to be varied with respect to ψ :

F(ψ) = Z(ψ)− λE(ψ)− μL(ψ), (2.4)

with C(ψ) = 0, μ and λ two Lagrange multipliers. Physically, and mathematically as we
will see below, this leads to K = 0 for the external solution.

3. Calculus of variation and the solution

To calculate a variation of F with respect to ψ we need to have δψ to appear explicitly in
the expressions of δZ, δE, δL, where δ denotes the variation of the quantity. To do so, we
will perform integrals by parts. Again, remember that we work in spherically symmetric
(3-D) configuration, using the scaled spherical radius s.

3.1. First-order variation
Before we calculate these part integrals, we make explicit the condition C = 0. Integrating
using the expression of the 3-D radial Laplacian in s leads simply to dψ/ds(s = 1) = 0.
This condition will be used later in the calculation.

Now, we calculate dF/dψδψ by integration by parts for the enstrophy, energy and
momentum. For these integrations by parts, we have the usual conditions δψ = 0 in
s = 0, 1. We have successively the enstrophy, energy and momentum variations:

δZ = 4π

∫ 1

0
∇2

s qδψs2 ds,

−λδE = 4πλ

∫ 1

0
qδψs2 ds,

−μδL = −16πμ

∫ 1

0
δψs2 ds.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(3.1)

Therefore, cancelling the whole variation of F at first order in δψ (to obtain an extremum
of F) leads to

∇2
s q + λq − 4μ = 0. (3.2)

This equation has a special solution satisfying both q = 4μ/λ and ∇2
s q = 0

simultaneously. This special solution is written as

ψs = ψ2 + 2μ
3λ

s2 = ψ2 + ψ1s2, (3.3)

where ψ2 is a constant, and ψ1 = 2μ/(3λ). Then, we have to solve the homogeneous rest
of the first-order equation ∇2

s q + λq = 0. The general solution of which is

qg(s) = q0 j0(
√
λs), (3.4)

where j0(x) = sin(x)/x = sinc(x) is the zeroth-order spherical Bessel function. For a 2-D
configuration, Leith (1984) found a general solution as a function of the first-order standard
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Bessel function but he calculated the functional variation according to the velocity
instead of the streamfunction. Considering our geometrical hypothesis, our expression is
consistent with his. Finally, we have the complete solution:

ψ(s) = ψ0 j0(
√
λs)+ ψ1s2 + ψ2, (3.5)

where we have three unknowns ψ0, μ, λ, since ψ1 is expressed as a function of μ and λ.
As the streamfunction is defined to a constant, ψ2 does not count as an unknown. However,
we have to make a choice as we actually have four constraints:

(i) the boundary condition: q(1) = ∇2
sψ(s = 1) = 0,

(ii) the potential vorticity: dψ/ds(s = 1) = 0,
(iii) the prescribed energy: E = E0,
(iv) the prescribed momentum: L = L0.

Leaving for now the first condition, accounting only for the three last conditions and
after some long algebra, we obtain three equations (written in the same order as the
constraints).

ψ1 = 2μ
3λ

=
√
λ

2
j1(

√
λ)ψ0,

L0 = 16π

15

√
λj1(

√
λ)

(
5√
λ

j2(
√
λ)

j1(
√
λ)

− 1

)
ψ0,

E0 = 7π

5
λj21(

√
λ)

(
1 − 25

7
√
λ

j2(
√
λ)

j1(
√
λ)

+ 5
7

j22(
√
λ)

j21(
√
λ)

)
ψ2

0 ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.6)

where j1 and j2 are spherical Bessel functions of order one and two, respectively.
Calculations have mostly been done using the results of Bloomfield, Face & Moss (2017)
which performed some analytical derivations on spherical Bessel functions.

Now the issue is to isolate the unknowns so as to determine them, which is not that easy
as the system is nonlinear. In 2-D, the variation of the functional according to the vortex
radius gave a simple relation between E0 and L0 in order to determine λ. In all cases, the
energy must be positive and by similarity to the 2-D case (where λ was the solution of
J2(

√
λ) = 0, where J2 was the second-order standard Bessel function), we can set λ as a

solution of j2(
√
λ) = 0. Therefore, we have

√
λ = γn for some n = 1, 2, . . . . It is worth

noting that setting this constraint makes both conditions q(1) = 0 and dψ/ds(s = 1) = 0
equivalent. Therefore, the continuity with the external problem is also verified.

In that case, the system is reduced to

ψ1 = 2μ
3λ

=
√
λ

2
j1(

√
λ)ψ0,

L0 = −16π

15

√
λj1(

√
λ)ψ0,

E0 = 7π

5
λj21(

√
λ)ψ2

0 .

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(3.7)

As in the 2-D case of Leith (1984), L0 and E0 are thus linked, here, through the relation
L2

0/E0 = 256
315 π; ψ0 and μ are thus given by ψ0 = −(16/21

√
λj1(

√
λ))(E0/L0) and μ =

−4
7λ(E0/L0).
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With these considerations, using rh = Rσ , this streamfunction leads to an azimuthal
velocity:

V(s) = ∂ψ

∂σ
= 16

21

(
E0

L0

)
1

j1(
√
λ)
( j1(

√
λs)− j1(

√
λ)s) cos θ, (3.8)

using the fact that ds/dσ = σ/s = cos(θ). This expression is similar to equation (34) by
Leith (1984). Therefore, the velocity field is maximum for θ = 0, the median plane of the
vortex, and minimum for θ = ±π/2, at the top and bottom of the vortex.

3.2. Second-order variation
Following Leith (1984), the second variation analysis needs to assure that one of the
stationary solutions already found is a true minimum. This approach is more easily
carried out using a spectral representation. In this part, calculus will be performed using
dψ/ds instead of ψ as it leads to simpler expressions. Initially, the aim was to show that
dF/dψ = 0 and d2F/dψ2 > 0 with F previously defined. Then, we slightly change our
problem to dF/du = 0 and d2F/du2 > 0 with u = dψ/ds. The important thing is to show
both conditions with the same variable. Replacing ψ by u in the second-order derivative
is not simple but doable. However, replacing in the first-order derivative remains easy.
Indeed, if dF/dψ = 0 then dF/du = (dF/dψ)(dψ/du) = 0. Using the properties of γn,
dψ/ds can be represented in terms of coefficients An in the series

dψ
ds

=
∞∑

n=0

Angn(s), (3.9)

where the basis functions are defined by g0(s) = √
5s and gn(s) = √

2( j1(γns)/j1(γn)) for
n = 1, 2, . . . so that the following orthonormality relation is satisfied:∫ 1

0
s2gn(s)gm(s) ds = δnm for 0 ≤ n,m < ∞, (3.10)

when j2(γn) = 0 for n = 1, 2, . . . . Then, we can derive the Laplacian of the streamfunction
such that

∇2
sψ =

∞∑
n=0

Anhn(s), (3.11)

where we have h0(s) = 3
√

5 and hn(s) = 3
√

2( j0(γns)/j0(γn)) for n = 1, 2, . . . . Note that
these functions are not orthogonal. The condition on the potential vorticity of an isolated
vortex imposes a linear constraint on the coefficients An such that

√
5A0 + √

2
∑∞

n=1 An =
0. Finally, using this condition and (3.11), the angular momentum, the energy and the
enstrophy are

L = 8π

3
(
√

2 −
√

5)A0,

E = 2π

∞∑
n=1

A2
n,

Z = 2π

∞∑
n,m=0

HmnAnAm,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.12)
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where Hmn = ∫ 1
0 s2hm(s)hn(s) ds. Then, using again the results from Bloomfield et al.

(2017) on integrals of spherical Bessel functions, one can find the explicit expression
for Hmn as follows: H00 = 15, Hn0 = H0n = 3

√
10, Hnn = 6 + γ 2

n for n = 1, 2, . . . and
Hmn = 6 for n,m = 1, 2, . . . .

By substituting the previous constraint on An coefficients into the enstrophy expression,
we end up with

Z = 2π

∞∑
n=1

γ 2
n A2

n. (3.13)

Therefore, using (3.11) we can write A0 as a function of L and express the energy
and enstrophy. That leads to A0 = 3L/8π(

√
2 − √

5), E = (9L2/32π(
√

2 − √
5)2)(1 +∑∞

n=1 B2
n) and Z = (9L2/32π(

√
2 − √

5)2)
∑∞

n=1 γ
2
n B2

n with Bn = An/A0. Therefore, in
spectral representation, the first-order variations of E and Z are straightforward and the
constrained first variation equation becomes

δZ − λδE = 9L2

16π(
√

2 − √
5)2

∞∑
n=1

(γ 2
n − λ)(δBn)Bn = 0. (3.14)

This equation may be satisfied for all δBn which leads to γ 2
N = λ, for N =

1, 2, . . . . In particular, the constraints on An coefficients leads to BN = −√
5/2 and

we have Bn = 0 for 0 < n /= N. We thus have E = 63L2/64π(
√

2 − √
5)2 and Z =

(45L2/64π(
√

2 − √
5)2)γ 2

N .
Of these various stationary solutions, the most important one with N = 1 has the

smallest value of Z since γ 2
1 < γ 2

2 < γ 2
3 < · · · . But to assure ourselves that it is a true

minimum in Z, we must examine the second variation. The combined second variation
about the stationary solution of interest becomes for N = 1

δ2Z − λδ2E = 9L2

16π(
√

2 − √
5)2

∞∑
n=2

(γ 2
n − γ 2

1 )(δBn)
2. (3.15)

Since γ 2
1 < γ 2

2 < γ 2
3 < · · · , this second variation is positive for any δBn. The solution is

thus a true minimum.

3.3. Solution
Finally, for N = 1 that minimizes the enstrophy value, the azimuthal velocity and the
potential vorticity field are

V(s) = 16
21

(
E0

L0

)
1

j1(γ1)
( j1(γ1s)− j1(γ1)s) cos θ,

q(s) = 16
7

(
E0

L0

)
1

j0(γ1)
( j0(γ1s)− j0(γ1)),

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.16)

with γ1 ≈ 5.76. Fixing arbitrarily 16E0/(7L0) = −1, the relative amplitude of both
quantities are shown in figure 1.
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Figure 1. Potential vorticity (a), azimuthal velocity (b) for θ = 0.

4. Vortex stability – numerical approach

Here we numerically assess the stability of our MEV. We use two different numerical
codes of the continuously stratified QG equations. The first one uses the contour advective
semi-Lagrangian (CASL) algorithm (Dritschel, Scott & Reinaud 2005; Özugurlu, Reinaud
& Dritschel 2008). The second one is a standard purely Eulerian pseudo-spectral method.

The CASL simulation uses a fine grid to represent the gridded potential vorticity (PV)
of resolution 10243 with a coarser grid of 2563 for the velocity field. The continuous PV
field is discretized using nl = 52 uniformly distributed PV levels associated with the PV
jumps �q = (PVmax − PVmin)/nl. At t = 0 there is a total of 7750 PV jumps discretizing
the 3-D MEV. Time integration is performed using a fourth-order Runge–Kutta scheme
with a time step set by the maximum PV. The method is essentially inviscid, with contour
surgery being the only source of pseudo-diffusion. The initial conditions are unperturbed
and we let the small background numerical noise be the only source of perturbation.
Results are shown in figure 2. They show that the vortex is slightly unstable with a
azimuthal mode m = 2, resulting in the formation of a tripolar vortex. The evolution on
unstable 3-D QG vortices has already been put in evidence by several authors (Miyazaki,
Fujiwara & Yamamoto 2003; Reinaud 2017). The resulting tripolar vortex is, however,
robust and does not split. We conduct a similar numerical experiment using a purely
Eulerian pseudo-spectral method to check that the instability is not the result of the
piecewise-uniform nature of the discretized PV in CASL. Equations are marched in
time with a semi-implicit Leapfrog scheme, with a CFL = 0.1. An Euler’s time step is
performed every 50 iterations to avoid the divergence of the odd and even time steps. The
grid resolution is 5123. A small Newtonian dissipation, ν, is introduced with ν = 10−8.
Since the CASL simulation indicates that the vortex initially deforms following the
azimuthal mode m = 2, we introduce an initial perturbation whereby the vortex is slightly
spheroidal at t = 0, with a horizontal aspect ratio of 1.01. Figure 3 shows a cross-section
of the PV field in the horizontal mid-plane of the vortex at t = 0, 10 and 19. The results
confirm that the vortex is sensitive to a mode m = 2 and reorganizes itself into a robust
tripolar vortex.
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Figure 2. (a,b) Horizontal mid-plane cross-section of the PV jumps discretizing the PV field at t = 9.55 and
15.92 for the CASL simulation. Red contours correspond to positive PV jumps, blue ones to negative PV jumps.
(c) Orthographic view on the PV jumps at the edge of the vortex at t = 15.92 (corresponding to the outermost
PV jumps of figure 2). The vortex is viewed at an angle of 60◦ from the vertical direction. The colour shading
indicates the height of the PV jump (the top of the vortex is in light blue, the bottom of the vortex is in dark
blue).
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Figure 3. Horizontal, mid-plane cross-section of the PV field for the pseudo-spectral simulation of the
perturbed 3-D MEV at (a) t = 0, (b) t = 10 and (c) t = 19.

5. Conclusion

The mathematical calculation (with a variational method) determined that 3-D, minimal
enstrophy, spherical vortices have opposite-signed QG potential vorticity radially. The
internal potential vorticity distribution is continuous with that of the external fluid,
which vanishes. Similarly, the rotational (azimuthal) velocity of the vortex increases
quasi-linearly for a fifth of its total radius (or half of the maximum velocity radius),
followed by a smoothly decaying tail. This is similar to the MEV M in 2-D incompressible
fluids (Leith 1984b). This is also in qualitative agreement with detailed measurements
of deep vortices at sea (Paillet et al. 1999, 2002; Ayouche et al. 2021). Recent results
of very-high-resolution numerical simulations of the Atlantic Ocean (Chouksey 2023),
indicate that deep/bottom vortices mostly have a shield in potential vorticity. Note that
our solutions (in spherical Bessel functions) bear similarity with those recently derived
by Zoeller & Viudez (2023), but from a different point of view (that of 3-D isotropic
isolated vortices without the minimal-enstrophy constraint). Finally, it will be of interest
to compare this MEV to 3-D maximum-entropy vortices, to be determined in the spirit of
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the work by Brands et al. (1999), Fine et al. (1995). Further work will be needed to

(i) assess analytically if non-axisymmetric 3-D MEVs can be determined analytically
(and then compared with the end states of our numerical solutions),

(ii) extend the present work to non-geostrophic dynamics (rotating shallow-water model)
and if possible, to 3-D continuously stratified flows.
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Appendix A. Variation according to the vortex radius R

Following Leith (1984b), we could have performed variations of the functional F(ψ) with
respect to the vortex radius R, but this would have led to a relation between the Lagrange
multipliers, and the enstrophy that we minimize (which is therefore unknown). Indeed,
with dimensions, the variations of enstrophy δRZ, energy δRE and angular momentum δRL
are

δRZ = −Z
R
δR,

δRE = E
R
δR,

δRL = 4L
R
δR.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(A1)

Minimizing variations leads to

Z = −λE − 4μL. (A2)

Therefore, the enstrophy would have been fixed by the energy and the generalized
momentum provided, which would have led to a contradiction. In the 2-D case, the
variation according to R does not involve the enstrophy and helps to find a relation
between the energy and the angular momentum. Contrary to the 2-D case, the enstrophy
is computed using the whole potential vorticity q and thus the spherical Laplacian instead
of the vertical vorticity (∂2

x + ∂2
y )ψ which gives a cylindrical Laplacian. Using the 2-D

introduced radius ρ and a cylindrical frame of reference would have led to a similar
development as that of Leith (1984). The 3-D geometry makes this parameter inconsistent.
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