Hausdorff dimension and exact approximation order in R^n
Résumé
Given a non-increasing function ψ : N → R + such that s n+1 n ψ(s) tends to zero as s goes to infinity, we show that the set of points in R n that are exactly ψ-approximable is non-empty, and we compute its Hausdorff dimension. For n ≥ 2, this answers questions of Jarník and of Beresnevich, Dickinson and Velani.
Domaines
Mathématiques [math]Origine | Fichiers produits par l'(les) auteur(s) |
---|